Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Тема 6. Приложения производной к исследованию поведения функции и построению графика и к другим задачам



Пискунов, гл. V, §1-12, упр 1-134

Данко , ч. I, гл. 3

 

План исследования функции и построения графика.

1.Найти область определения функции. Решение этого вопроса указывает на те интервалы оси (ОХ), над которыми пройдёт график и на те значения аргумента x, над которыми график не пройдёт, а также в каких точках пройдут вертикальные асимптоты.

2.Исследовать на чётность, нечётность. Решение этого вопроса облегчает построение.

3.Указать промежутки монотонности функции и найти экстремумы её, точки экстремумов. Построить соответствующие точки на координатной плоскости.

4.Указать точки перегиба графика функции и нанести их на координатную плоскость. Указать промежутки выпуклости, вогнутости.

5.Найти уравнения вертикальных и наклонных асимптот, используя условия для существования этих асимптот. Построить эти линии на координатной плоскости.

6.Найти точки пересечения графика функции с осями координат. Нанести их на плоскость.

7.Исследовать поведение функции на концах области определения. Это поможет при построении графика.

8.Можно взять несколько контрольных точек, в случае уточнения поведения графика.

9.Построить график.

 

Задача 1.Исследовать функцию у = 1п(х2 +10) и построить ее график.

 

Решение:

1. Определим область существования функции. Квадратный трехчлен, стоящий под знаком ло­гарифма, можно представить так: х26x+10=(x-3)2 + 1. Как видно, под знаком логарифма будет положи­тельное число при любом значении аргумента х. Следо­вательно, областью существования данной функции слу­жит вся числовая ось.

2. Исследуем функцию на непрерывность. Функция всюду непрерывна и не имеет точек разрыва.

3. Установим четность и нечетность функции. Так как у(-х)¹у(х) и у(- х)¹ - у(х), то функция не яв­ляется ни четной, ни нечетной.

4. Исследуем функцию на экстремум. Находим пер­вую производную:

 

Знаменатель х2- 6x+10>0 для любого значения х. Как видно, при х < 3 первая производная отрицательна, а при х > 3 положительна. При х = 3 первая производная меняет свой знак с минуса на плюс. В этой точке функ­ция имеет минимум:

Итак, A(3; 0) - точка минимума . Функция убывает на интервале (- ¥ , 3) и возрастает на интервале (3, + ¥).

5. Определим точки перегиба графика функции и интервалы выпуклости и вогнутости кривой. Для этого находим вторую производную:

Разобьем всю числовую ось на три интервала: ( - ¥, 2), (2, 4), (4, + ¥). Как видно, в первом и третьем интерва­лах вторая производная отрицательна, а во втором ин­тервале положительна. При x1 = 2 и х2 = 4 вторая произ­водная меняет свой знак. Эти значения аргумента явля­ются абсциссами точек перегиба. Определим ординаты этих точек:



Следовательно, P1(2; ln 2) и P2(4; ln 2) — точки перегиба графика функции. График является выпуклым в интерва­лах ( - ¥, 2) и (4, +¥) и вогнутым в интервале (2, 4).

6. Определим уравнения асимптот графика функции. Для определения уравнения асимптоты y=kx+b вос­пользуемся формулами:

Имеем

Чтобы найти искомый предел, дважды применяем правило Лопиталя:

Итак, кривая не имеет асимптот.

 


Просмотров 511

Эта страница нарушает авторские права

allrefrs.ru - 2019 год. Все права принадлежат их авторам!