Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Тема 5. Производная и дифференциал функции одного аргумента



 

Пискунов, гл. III, § 1-26, упр 1-220

Гл. IV, § 1-7, упр 1-55.

 

Определение производной, дифференциала.

1. Определение. Производной первого порядка от функции по аргументу xназывается предел отношения приращения функции к приращению аргумента при условии, что , т.е. или

2. , где a- угол наклона касательной к

 

- уравнение касательной, проведённой в т.

 

3. - скорость изменения функции в т. x0.

 

  1. Отыскание производной называется дифференцированием.
  2. - дифференциал функции равен произведению производной функции на дифференциал аргумента.

Геометрически dy представляет собой приращение ординаты касательной к графику функции в заданной точке.

 

6. - дифференциал аргумента равен приращению аргумента.

- дифференциал функции и приращение функции равны лишь приближённо.

 

7. - формуладляприближённыхвычислений.

Таблица дифференциалов и производных основных элементарных функций.

Элементарные функции дифференциал производная
1. Степенная функция
2. Линейная функция a,b-постоянные y=x.
3.Тригонометрич. функции y=sin x   y=cos x   y=tg x   y=ctg x      
4. Показательная функция , a-число  
5. Логарифмическая функция y=ln x
6. Иррациональная функция

 

7. Обратно тригонометричес- кие функции y= arcsin x   y=arcos x     y= arctg x   y=arcctg x    
8. y=c c-const d(c)=0·dx  

Основные правила дифференцирования.

Пусть С- постоянное, и - функции имеющие производные.

Тогда :

1)

2)

3)

4)

5)

6)

7) если , , т.е , где функции f(U) и U(x) имеют производные, то - правило дифференцирования сложной функции.

 

5.2 Примеры решения задач.

Задача 1. Найти производные или следующих функций:

а)

б)

в)

г)

 

Решение:

а) Пользуясь правилом логарифмиро­вания корня и дроби, преобразуем правую часть:

Применяя правила и формулы дифференцирования, получим:

 

б) Предварительно прологарифмируем по основанию е обе части равенства:

Теперь дифференцируем обе части, считая сложной функцией от переменной х:



откуда

в) В данном случае зависимость между аргументом х и функцией у задана уравнением, которое не разре­шено относительно функции у. Чтобы найти производ­ную у', следует дифференцировать по х обе части задан­ного уравнения, считая при этом у функцией от х, а за­тем полученное уравнение решить относительно искомой производной у'. Имеем

Из полученного равенства, связывающего х, у, и у',

находим производную у':

 

откуда

 

г) Зависимость между переменными х и у задана па­раметрическими уравнениями. Чтобы найти искомую производную у', находим предварительно дифференци­алы dy и dx и затем берем отношение этих дифферен­циалов

Задача 2. Найти производную второго порядка

а)

б)

Решение: а) Функция у задана в неявном виде. Дифференцируем по х обе части заданного уравнения, считая при этом у функцией от х:

(1)

откуда

 

Снова дифференцируем по х обе части (1):

(2)

Заменив у' в (2) правой частью (1), получим:

б) Зависимость между переменными xи у задана параметрическими уравнениями. Чтобы найти произ­водную у', находим сперва дифференциалы dy и dx и за­тем берем отношение этих дифференциалов:

Тогда

Производная второго порядка . Следователь­но, чтобы найти у", надо найти дифференциал dy':

Тогда

 

Задача 3. Найти приближенное значение функции при исходя из ее точного зна­чения при

Решение: Известно, что дифференциал dy функ­ции представляет собой главную часть прира­щения этой функции .Если приращение аргумента мало по абсолютной величине, то приращение при­ближенно равно дифференциалу, т. е. . Так как , а то имеет место при­ближенное равенство:

Пусть , т. е.



 

Тогда

 

(1)
или

Приближенное равенство (1) дает возможность найти значение функции при , если известно значение функции и ее производной при Прежде чем воспользоваться приближенным равен­ством ( 1 ) , находим числовое значение производной f'(x) при х= 6:

или

Применяя (1), получаем

Вопросы для самопроверки.

1. Сформулировать определение производной.

2. Каков геометрический смысл производной?

3. Как составить уравнение касательной?

4. Каков геометрический и механический смысл производной?

5. Как найти производную неявной функции? Параметрической функции?

6. Функция непрерывна в т. x0. Следует ли отсюда дифференцируемость функции?

7. В чём заключается геометрический смысл дифференциала функции?

8. Записать формулу, используемую в приближённых вычислениях. Найти приближённое значение

 

 


Эта страница нарушает авторские права

allrefrs.ru - 2019 год. Все права принадлежат их авторам!