Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Тема 2. Элементы аналитической геометрии на плоскости



Ефимов, гл 1-3, 4-6

Данко, гл. 1, §1-5.

 

2.1 Основные формулы аналитической геометрии.

1. - длина отрезка между точками и

2. ; - координаты точки деления отрезка в данном отношении.

 

| | | | |

 

-отношение величины отрезка от начала отрезка т. M1 до делящей т. C к величине отрезка от делящей точки C до конца отрезка M2 .

3. - уравнение прямой линии с угловым коэффициентом.

- угловой коэффициент прямой.

- тангенс угла между двумя прямыми.

-угол между двумя прямыми.

- условие | | двух прямых.

- условие ^ двух прямых.

y y

 

 

b

x x 0 0

 

 

рис 1. рис 2.

 

4. - уравнение пучка прямых.

 

y

- центр пучка.

M0

 

 

х

 

рис 3.

5. - уравнение прямой, проходящей через две точки и

6. - уравнение прямой, проходящей через точку параллельно вектору +

 

 
 


y

 

 

x

 

рис 4.

 

7. - уравнение прямой, проходящей через т. , перпендикулярно вектору .

y

 

 

x

 

М0

 

 

рис. 5

 

8. - общее уравнение прямой- уравнение первой степени с двумя неизвестными.

9. - уравнение в отрезках на осях.

 

 

 
 


y

 

 

b

 

0 a x

 

рис. 6

 

10. параметрические уравнения прямой.

ß

, t- переменный параметр.

11. - уравнение окружности с центром в т. O (0;0) и радиусом r. ( рис. 7 )

 

 

 

 

рис. 7

 

- уравнение окружности со смещённым центром . (рис. 8)

12. Каноническое уравнение эллипса.

 

 

 

- уравнение эллипса с центром в начале координат.

 

- уравнение эллипса со смещённым центром в т. O1(x0,y0).

 

 

13. Каноническое уравнение гиперболы.

 

 

- каноническое уравнение гиперболы с центром в начале координат.

- уравнение гиперболы со смещённым центром O1 ( x0, y0).

 

14. Каноническое уравнение параболы.

 

 

 

- каноническое уравнение параболы с вершиной в т. O (0,0).

- уравнение директрисы.

- уравнение параболы со смещённой вершиной в т. O1 (x0,y0)

 

2.2 Примеры решения задач.

Задача 1. Даны координаты вершин треугольника АВС: А (4; 3), В (16; - 6), С (20; 16). Найти: 1) длину стороны АВ; 2) уравнения сторон АВ и ВС и их угловые коэффициенты; 3) угол В в радианах с точностью до двух знаков; 4) уравнение высоты CD и ее длину; 5) уравнение медианы АЕ и координаты точки К пере­сечения этой медианы с высотой CD; 6) уравнение пря­мой, проходящей через точку Кпараллельно стороне АВ; 7) координаты точки М, расположенной симметрич­но точке А относительно прямой CD.



 

Решение. 1. Расстояние d между точками А ( x1; y1) и В (х2; y2) определяется по формуле:

 

(1)

 

Применяя (1), находим длину стороны АВ: =15

 

2. Уравнение прямой, проходящей через точки А(х1; у1) и В(х2; y2), имеет вид:

(2)

 

Подставляя в (2) координаты точек A и В, получим уравнение стороны АВ:

 

4y-12= -3x+12;

 

3x+4y-24=0 (AB).

Решив последнее уравнение относительно у, находим уравнение стороны АВ в виде уравнения прямой с уг­ловым коэффициентом:

4y= -3x+24; откуда

Подставив в (2) координаты точек В и С, получим уравнение прямой BC:

 

;

 

или y=5,5x-94, откуда kBC=5,5.

3. Известно, что тангенс угла между двумя прямы­ми, угловые коэффициенты которых соответственно рав­ны k1 и k2 вычисляется по формуле:

(3)

Искомый угол В образован прямыми АВ и ВС, угло­вые коэффициенты которых найдены: Применяя (3), получим

В=63°26'. или В» 1,11 рад.

4. Уравнение прямой, проходящей через данную точ­ку в заданном направлении, имеет вид: y—y1 = k(x—x1). (4)

Высота CD перпендикулярна стороне АВ. Чтобы найти угловой коэффициент высоты CD, воспользуемся усло­вием перпендикулярности прямых. Так как, , то . Подставив в (4) координаты точки С и най­денный угловой коэффициент высоты, получим:

Чтобы найти длину высоты CD, определим сперва координаты точки D-~ точки пересечения прямых АВ и CD. Решая совместно систему:



 

, находим x=8, y=0, т.е D(8;0)

По формуле (1) находим длину высоты CD:

 

5. Чтобы найти уравнение медианы АЕ, определим сначала координаты точки Е, которая является середи­ной стороны ВС, применяя формулы деления отрезка на две равные части:

 

Следовательно, E (18;5).

 

Подставив в (2) координаты точек А и Е, находим уравнение медианы:

 

Чтобы найти координаты точки пересечения высоты CD и медианы АЕ, решим совместно систему уравнений:

x=11, y=4; K (11;4).

 

6. Так как искомая прямая параллельна стороне АВ, то ее угловой коэффициент будет равен угловому коэф­фициенту прямой АВ. Подставив в (4) координаты най­денной точки К и угловой коэффициент по­лучим:

7. Так как прямая АВ перпендикулярна прямой CD, то искомая точка М, расположенная симметрично точ­ке А относительно прямой CD, лежит на прямой АВ. Кроме того, точка D является серединой отрезка AM. Применяя формулы (5), находим координаты искомой точки М:

Треугольник ABC, высота CD, медиана АЕ, прямая KF и точка М построены в системе координат хОу на рис. 1.

 

 

рис. 1

 

Задача 2. Составить уравнение геометрического мес­та точек, отношение расстояний которых до данной точ­ки A (4; 0) и до данной прямой х=1 равно 2.

 

Решение.

(x,y)

рис. 2

В системе координат хОу построим точку A (4;0) и прямую х=1. Пусть М(х; у) —произ­вольная точка искомого геометрического места точек. Опустим перпендикуляр MB на данную прямую х=1 и определим координаты точки В. Так как точка В лежит на заданной прямой, то ее абсцисса равна 1. Ордината точки В равна ординате точки М. Следовательно, В(1,у) (рис. 2).

По условию задачи МА:МВ=2. Расстояния МА и MB находим по формуле (1) задачи 1:

Возведя в квадрат левую и правую части, получим:

 

или

Полученное уравнение представляет собой гипербо­лу, у которой действительная полуось а=2, а мнимая -

Определим фокусы гиперболы. Для гиперболы вы­полняется равенство Следовательно, с2=4+12=16; с=4; F 1(— 4; 0), F2(4; 0) — фокусы гипер­болы. Как видно, заданная точка A(4; 0) является пра­вым фокусом гиперболы.

Определим эксцентриситет полученной гиперболы:

Уравнения асимптот гиперболы имеют вид и

Следовательно, или и — асимптоты гиперболы. Прежде чем постро­ить гиперболу, строим ее асимптоты.

Задача 3.Составить уравнение геометрического места точек, равноудаленных от точки A (4; 3) и прямой у=1. Полученное уравнение привести к простейшему виду.

 

Решение.

 

рис. 3

 

Пусть М(х; у) — одна из точек искомого геометрического места точек. Опустим из

точки М пер­пендикуляр MB на данную прямую у=1 (рис. 3). Опре­делим координаты точки В. Очевидно, что абсцисса точ­ки В равна абсциссе точки М, а ордината точки В равна I, т. е. В (х; 1). По условию задачи МА=МВ. Следовательно, для любой точки М(х; у), принадлежащей искомому геометрическому месту точек, справедливо равенство:

 

или

 

Полученное уравнение определяет параболу с верши­ной в точке О¢ (4; 2). Чтобы уравнение параболы при­вести к простейшему виду, положим x-4=Х и y+2=Y; тогда уравнение параболы принимает вид:

Чтобы построить найденную кривую, перенесем нача­ло координат в точку О' (4; 2), построим новую систему координат XO'Y, оси которой соответственно парал­лельны осям Ох и Оу, и затем в этой новой системе построим параболу (*) (рис. 3).

 

2.3 Вопросы для самопроверки.

  1. Какое равенство называется уравнением прямой?
  2. Как пройдёт прямая линия, если свободный член в этом уравнении равен нулю?
  3. Как вычислить угол между двумя прямыми? Каковы условия параллельности и перпендикулярности прямых?
  4. Как найти угловой коэффициент прямой, если известны две её точки?
  5. Запишите уравнения прямых, совпадающих с осями координат.
  6. Дайте определение окружности. Приведите уравнение

к каноническому виду. Назовите центр и радиус данной окружности.


Эта страница нарушает авторские права

allrefrs.ru - 2019 год. Все права принадлежат их авторам!