Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Основные теоремы теории вероятностей



Предмет и основные понятия ТВ.

ТВ – математическая наука изучающая закономерность в массовых однородных случаях, явлениях и процессах.

Элементарные события – это простейшие не разложимые результаты опыта. Вся совокупность элементарных событий – пространство элементарных событий.

Под опытом в ТВ понимается выполнение некоторого комплекса условий в результате которого происходят или не происходят некоторые события – факты.

Событие в ТВ – это любое конечное или счетное подмножество пространства W.

Три типа событий:

· Достоверные

· Случайные

· Невозможные.

События являются несовместными если они не могут происходить одновременно и наоборот.

Элементы последовательность попарно несовместны, если любые два из них попарно несовместны.

Несколько событий равновозможные, если ни одно из них не имеет объективного преимущества перед другим. События образуют полную группу если в результате опыта ничего кроме этих событий не может произойти.

Алгебра событий.

1) Суммой двух событий А + В = АÈВ называется такое третье событие которое заключается в наступлении хотя бы одного из событий А или В (или).

2) Произведением двух событий А*В = АÇВ называется такое третье событие, которое заключается в наступлении двух событий одновременно (и).

3) Отрицанием события А является событие `А, которое заключается в ненаступлении А.

4) Если наступление события А приводит к наступлению события В и наоборот, то А=В.

Пусть множество S – это множество всех подмножеств пространства всех элементов W для которых выполняются следующие условия:

1. Если АÎ S, B Î S, то A+B = AÈB Î S

2. Если АÎ S, B Î S, то А*В = АÇВ Î S

3. Если АÎ S, то `А Î S.

Тогда множество S называется алгеброй событий.

При точном подходе достаточно одного из этих свойств, так как каждое из них следует из другого.

При расширении операции сложения и умножения, на случай счетного множества событий, алгебра событий называется бролевской алгеброй.

 

Определение вероятности события.

Аксиоматическое определение вероятности.

Вероятность события – это численная мера объективной возможности его появления.

Аксиомы вероятности:

· Каждому событию А ставится в соответствие неотрицательное число р, которое называется вероятностью события А. Р(А)=р ³ 0, где АÎ S, SÍW.



· Р(W) = 1, где W - истинное (достоверное) событие.

Аксиоматический подход не указывает, как конкретно находить вероятность.

Классическое определение вероятности.

Пусть событие А12, …, Аn Î S (*) образуют пространство элементарных событий, тогда событие из * которое приводит к наступлению А, называют благоприятствующими исходами для А. Вероятностью А называется отношение числа исходов благоприятствующих наступлению события А, к числу всех равновозможных элементарных исходов.

Р(А)= m(A)
n

Свойства вероятности:

1. 0 £ Р(А) £ 1,

2. Р (W) =1,

3. Р (`W) = 0.

Статическое определение вероятности.

Пусть проводится серия опытов (n раз), в результате которых наступает или не наступает некоторое событие А (m раз), тогда отношение m/n, при n®¥ называются статистической вероятностью события А.

Геометрическое определение вероятности.

Геометрической вероятностью называется отношение меры области, благоприятствующей появлению события А, к мере всей области.

 

Интегральная функция распределения и ее свойства

Для непрерывной случайной величины X вероятность Р(Х= xi)→0, поэтому для НСВ удобнее использовать вероятность того, что СВ Х<хi, где хi- текущее зна­чение переменной. Эта вероятность называется интегральной функцией распределения: P(X<xi)=F(x).

Интегральная функция является универсальным спо­собом задания СВ (как для ДСВ, так и для НСВ).

Свойства интегральной функции распределения:

1) F(x) не убывает (если х2>x1, то F(x2)≥Р(х1));

2). F(-∞)=0;

3). F(+∞)=1;

4) вероятность попадания СВ X в интервал а<Х<b определяется по формуле P(a≤X<b)=F(b)-F(a).

Замечание.Обычно для определённости левую границу включают в интервал, а правую нет. Вообще для НСВ вер­но, что Р(а≤Х<b)= Р(а <Х≤b) =Р(а<Х < b)= Р(а≤X≤b).



 

Основные теоремы теории вероятностей.

Теорема1.

Вероятность суммы двух несовместных событий А и В равна сумме их вероятностей:

Р(А+В)=Р(А)+Р(В).

Следствие1.

Если А12, …, Аn - попарно несовместные события, то вероятность их суммы равна сумме вероятностей этих событий.

Следствие2.

Вероятность суммы попарно несовместных событий А12, …, Аn , образующих полную группу, равна 1.

Следствие3.

События А и `А несовместны и образуют полную группу событий, поэтому Р(А +`А) = Р(А) + Р(`А) = 1. Отсюда Р (`А) = 1 – Р(А).

Теорема2.

Вероятность суммы двух совместных событий А и В равна сумме вероятностей этих событий без вероятности их произведения:

Р (А+В) = Р(А)+Р(В) – Р (А*В).

Два события А и В называются независимыми, если появление одного из них не влияет на вероятность появления другого (в противном случае события зависимы).

Теорема3.

Вероятность произведения двух независимых событий равна произведению их вероятностей Р(А*В)=Р(А)*Р(В).

Следствие.

Вероятность произведения n независимых событий А12, …, Аn равна произведению их вероятностей.

Условной вероятностью события В при условии, что событие А уже произошло, называется число Р(АВ)/Р(А)=Р(В/А)РА(В).

Теорема4.

Вероятность произведения двух зависимых событий А и В равна произведению вероятности наступления события А на условную вероятность события В при условии что событие А уже произошло:

Р(А*В) =Р(А)*Р(В/А).

Следствие.

Если события А и В независимы, то из теоремы 4 следует теорема 3.

Событие В не зависит от события А, если Р(В/А) = Р(В). Теорему 4 можно обобщить на n событий.

Теорема5.

Вероятность произведения n зависимых событий А12, …, Аn равна произведению последовательных условных вероятностей:

Р(А12*…*Аn-1*An)= P(A1)*P(A2/A1)*...*P(An/A1*A2*...*An-1).

Теорема6.

Вероятность наступления хотя бы одного из событий А12, …, Аn равна разности между единицей и вероятностью произведении отрицаний событий А12, …, Аn :

Р(А)=1-Р(`А1*`А2*…*`Аn)= 1- P(`A1)*P(`A2/`A1)*...*P(`An/`A1*`A2*...*`An-1).

Следствие1.

Вероятность наступления хотя бы одного из событий А12, …, Аn независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий: Р(А)=1-Р(`А1)Р(`А2)…Р(`Аn).

Следствие2.

Если события А12, …, Аn независимы и имеют одинаковую вероятность появиться (Р(А1)=Р(А2)=…Р(Аn)= р, Р(Аi)= 1-р=q ), то вероятность появления хотя бы одного из них равна Р(А)=1-qn .


Эта страница нарушает авторские права

allrefrs.ru - 2019 год. Все права принадлежат их авторам!