Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Дополнительным к событию А называется событие , означающее, что событие А не происходит



Элементарными исходами опыта называются такие результаты опыта, которые взаимно исключают друг друга и в результате опыта происходит одно из этих событий, также каково бы ни было событие А, по наступившему элементарному исходу можно судить о том, происходит или не происходит это событие.

Совокупность всех элементарных исходов опыта называется пространством элементарных событий.

Вопрос 39 Теорема сложения вероятностей

Теорема (сложения вероятностей). Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий.

 

Следствие1:Если события образуют полную группу несовместных событий, то сумма их вероятностей равна единице.

 

Определение. Противоположными называются два несовместных события, образующие полную группу.

Теорема. Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления

Следствие 2: Сумма вероятностей противоположных событий равна единице.

Определение. Событие А называется независимым от события В, вероятность события А не зависит от того, произошло событие В или нет. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.

 

Вопрос 40 Теорема умножения вероятностей.

Теорема. (Умножения вероятностей) Вероятность произведения двух событий (совместного появления этих событий) равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое событие уже наступило.

Также можно записать:

Доказательство этой теоремы непосредственно вытекает из определения условной вероятности.

Если события независимые, то , и теорема умножения вероятностей принимает вид:

 

В случае произведения нескольких зависимых событий вероятность равна произведению одного из них на условные вероятности всех остальных при условии, что вероятность каждого последующего вычисляется в предположении, что все остальные события уже совершились.

Из теоремы произведения вероятностей можно сделать вывод о вероятности появления хотя бы одного события.

Если в результате испытания может появиться п событий, независимых в совокупности, то вероятность появления хотя бы одного из них равна


Здесь событие А обозначает наступление хотя бы одного из событий Ai, а qi – вероятность противоположных событий .



 

 

Вопрос 41 Формула полной вероятности

Пусть событие А может наступить при условии реализации одной из гипотез Н1, Н2, ..., Нn, образующих полную группу событий.

Тогда

 

Формула (1) называется формулой полной вероятности.

Вопрос 42 Теорема Байеса

Предположим, что в результате испытания событие А произошло. Какова вероятность, что событие А произошло в результате реализации гипотезы Нk , т.е. P(Hk/A) = ? (происходит переоценка вероятностей гипотез). Ответ дает формула Байеса:

 

Вопрос 43 Формула Бернулли

Возникает в тех случаях, когда ставится вопрос: сколько раз происходит некоторое событие в серии из определенного числа независимых наблюдений (опытов), выполняемых в одинаковых условиях.

Для удобства и наглядности будем полагать, что нам известна величина p – вероятность того, что вошедший в магазин посетитель окажется покупателем и (1– p) = q – вероятность того, что вошедший в магазин посетитель не окажется покупателем.

Если X – число покупателей из общего числа n посетителей, то вероятность того, что среди n посетителей оказалось k покупателей равна

P(X= k) = , где k=0,1,…n (1)

Формулу (1) называют формулой Бернулли. При большом числе испытаний биномиальное распределение стремиться к нормальному.

Вопрос 44 Случайные величины, способ их описания

Случайной величинойназывается величина, которая в результате опыта может принимать то или иное значение, причем заранее известно какое именно.

Случайные величины можно разделить на две категории.

Дискретной случайной величиной называется такая величина, которая в результате опыта может принимать определенные значения с определенной вероятностью, образующие счетное множество (множество, элементы которого могут быть занумерованы).



Это множество может быть как конечным, так и бесконечным.

Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений.

Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка.

Очевидно, что число возможных значений непрерывной случайной величины бесконечно.

Для задания случайной величины недостаточно просто указать ее значение, необходимо также указать вероятность этого значения.

Вопрос 45 Основные числовые характеристики непрерывной случайной дискретной величины.

Определение. Соотношение между возможными значениями случайной величины и их вероятностями называется законом распределения дискретнойслучайной величины.

Закон распределения может быть задан аналитически, в виде таблицы или графически.

Таблица соответствия значений случайной величины и их вероятностей называется рядом распределения.

Графическое представление этой таблицы называется многоугольником распределения. При этом сумма все ординат многоугольника распределения представляет собой вероятность всех возможных значений случайной величины, а, следовательно, равна единице.

Вопрос 46 Основные числовые характеристики непрерывных случайных величин

Математическим ожиданием непрерывной случайной величины X с плотностью распределения j(х) называется число а = М(Х), определяемое равенством:

Дисперсией D(X) непрерывной случайной величины называется математическое ожидание квадрата отклонения случайной величины от её математического ожидания: D(Х) = М[Х-a]2, а=M(X).

 

Средним квадратичным отклонениемназывается квадратный корень из дисперсии

 

Модой М0 дискретной случайной величины называется ее наиболее вероятное значение. Для непрерывной случайной величины мода – такое значение случайной величины, при которой плотность распределения имеет максимум.

 

Если многоугольник распределения для дискретной случайной величины или кривая распределения для непрерывной случайной величины имеет два или несколько максимумов, то такое распределение называется двухмодальным или многомодальным.

Если распределение имеет минимум, но не имеет максимума, то оно называется антимодальным.

Медианой MD случайной величины Х называется такое ее значение, относительно которого равновероятно получение большего или меньшего значения случайной величины.

Геометрически медиана – абсцисса точки, в которой площадь, ограниченная кривой распределения делится пополам.

Отметим, что если распределение одномодальное, то мода и медиана совпадают с математическим ожиданием.

Начальным моментомпорядка k случайной величины Х называется математическое ожидание величины Хk.

Для дискретной случайной величины: .

Для непрерывной случайной величины: .

Начальный момент первого порядка равен математическому ожиданию.

 

Центральным моментомпорядка k случайной величины Х называется математическое ожидание величины

Для дискретной случайной величины: .

Для непрерывной случайной величины: .

Центральный момент первого порядка всегда равен нулю, а центральный момент второго порядка равен дисперсии. Центральный момент третьего порядка характеризует асимметрию распределения.

Отношение центрального момента третьего порядка к среднему квадратическому отклонению в третьей степени называется коэффициентом асимметрии.

Для характеристики островершинности и плосковершинности распределения используется величина, называемая эксцессом.

 

Кроме рассмотренных величин используются также так называемые абсолютные моменты:

Абсолютный начальный момент: . Абсолютный центральный момент: Абсолютный центральный момент первого порядка называется средним арифметическим отклонением.

 

Вопрос 47

Биноминальный закон распределения вероятностей случайных величин

Дискретная случайная величина X имеет биномиальный закон распределения, если она принимает значения 0,1, 2,…,m,….,n с вероятностями р(m) = Р(Х = m) = Cnm рm qn-m, где 0 < p <1, q = 1─ р.

Биномиальный закон распределения представляет собой закон распределения числа Х = m наступлений события А в n независимых испытаниях, в каждом из которых оно может произойти с одной и той же вероятностью р.

Теорема. Математическое ожидание и дисперсия случайной величины, распределенной по биномиальному закону, даются формулами

M(X) = np, D(X) = npq.

Следствие. Математическое ожидание величины (m/n) в n независимых испытаниях, в каждом из которых оно может наступить с одной и той же вероятностью р, равно р, т.е. M(m/n) = р, D(m /n)=pq/n.

Распределение Пуассона Дискретная случайная величина X имеет закон распределения Пуассона, если она принимает значения 0,1 2,…,m,…,n с вероятностями р(m) = Р(Х=m) =е─λ λm/m! , где λ = np.

Tеорема. Математическое ожидание и дисперсия случайной величины, распределенной по закону Пуассона, совпадают и равны параметру λ этого закона. т.е. М(Х) = λ, D(X)= λ.

Распределение Пуассона ─ частный случай биномиального закона распределения для относительно больших n и относительно малых р. Равномерный закон распределения Непрерывная случайная величина X имеет равномерный закон распределения на отрезке [a, b], если её плотность вероятности постоянна на этом отрезке и равна нулю вне его, т.e.

Теорема. Функция распределения случайной величины X, распределенной по равномерному закону, есть

 

 


Её математическое ожидание:

и дисперсия

Нормальный закон распределения Непрерывная случайная величина X имеет нормальный закон распределения (закон Гаусса) с параметрами а и s2 , если её плотность вероятности имеет вид:

 

 

Кривую нормального закона распределения, называют гауссовой кривой.

Теорема 1. Математическое ожидание случайной величины X, распределённой по нормальному закону, равно параметру а этого закона, а дисперсия - параметру s2, т. е. М(Х) = a, D(X)= s2.

Функция распределении случайной величины X, распределённой по нормальному закону имеет вид:

 

В частном случае, когда а=0, а s2=1 нормальное распределение называется стандартным.

Теорема 2. Функция распределении случайной величины X, распределённой по стандартному нормальному закону, выражается через функцию Лапласа Ф0(х) по формуле

где

 

 

В общем случае

 

Вопрос 48 числовые характеристики систем двух случайных величин

Условным математическим ожиданием дискретной случайной величины Y при X=x (x- определенное возможное значение X) называют сумму произведений возможных значений Y на их условные вероятности :

 

Для непрерывных величин:

 

где - условная плотность случайной величины Y при X=x.

Условное математическое ожидание есть функция от x , т.е.

( ) называют функцией регрессии Y на X.

Аналогично определяется условное математическое ожидание случайной величины X и функции регрессии X на Y.

Зависимость между случайными величинами

Теорема.Для того, чтобы случайные величиныX и Y были независимыми необходимо и достаточно, чтобы функция распределения системы (Х, У) была равна произведению функций распределения составляющих: F(x,y)= F1(x)F2(y)

Ковариацией (или корреляционным моментом) называется математическое ожидание произведения отклонения этих величин от своих математических ожиданий:

 

Для вычисления корреляционного момента (ковариации) дискретных случайных величин используют формулу:

 

для непрерывных:

 

Корреляционный момент служит для характеристики связи между величинами Х и У.

Теорема1. Корреляционный момент двух независимых случайных величин Х и У равен нулю.

Коэффициентом корреляции двух случайных величин называется отношение их ковариации к произведению средних квадратичных отклонений этих величин:

 

Теорема2. Абсолютная величина корреляционный момента двух случайных величин Х и У не превышает среднего геометрического их дисперсий. (т.е. )

Линейной средней квадратической регрессией У на Х называется функция вида:

 

где


Коэффициент называют коэффициентом регрессии У на Х .

Линейной средней квадратической регрессией Х на У называется функция вида:

 


- коэффициент регрессии Х на У.

- остаточная дисперсия. Характеризует величину ошибки, которую допускают при замене Х линейной функцией от У.


Эта страница нарушает авторские права

allrefrs.ru - 2019 год. Все права принадлежат их авторам!