Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Равнодействующая 2-х параллельных сил,направл-х в одну сторону



Распределенная нагрузка

Q=[н/м], l=[м]. Q=òqdx=qòdx=ql

Q(x)=(q/l)x, Q=òq(x)dx=(q/l)òxdx=(q/l)(x2/2)½= (ql)/2.

dQ=q(x)dx, [(ql)/2]b=òq(x) xdx=(q/l) ò x2dx=(q/l)(x3/3)½= (ql)/3.

[(ql)/2]b= (ql)/3Þb=(2/3)l.

Вывод: в общем случае вел-на сосредоточенной силы равна площади распределенной на оси и приложена она в центре тяжести.(Все это касается распределенной нагрузки параллельн.между собой силам).

Сила трения скольжения. Законы Кулона для Fтр.ск.:

1)Сила трения скольжения лежит в интервале 0£ Fтр£ Fмах;

2) Сила трения скольжения не зависит от площади соприкасающихся тел, а зависит лишь от силы давления этого тела на поверхность

3)Сила тр.скольжения опр-ся по ф-ле: Fтр=fN, N-сила реакции опоры =Р, f-коэф-т трения скольжения

4)Коэф-т трения скольжения завис.от шероховатостей пов-тей трущихся тел, от температуры, от физич.состояния материала.

Момент трения качения.

N=P.

Мтр.кач.=dN, d-коэф.трения качения

В динамических ур-ях сила трения скольженич и момент трения качения входят в правые части ур-я. Правило со знаком -.

Конус трения.

Угол a образуется между силой R и N, причем сила R-это равнодействующая силы N и максимальной силы трения.

tga= Fтр/N=f-коэф.трения

Конус, построенный на силе R с углом a наз-ся конусом трения.

Если сила RА оказывается внутри конуса, то тело нах-ся в равновесии.

Т.о. если какая-то активная сила нах-ся внутри конуса и лежит на его образующей, то тогда тело нахся в равновесии. Если сила RА нах-ся вне конуса трения, то тогда тело нге может находится в равновесии.

Взаимодействие трения качения и трения скольжения.

Тело нах-ся в равновесии:

dР= Мтр.кач.=rQ,

fP= Fтр=Q

Если Q<(d/r)P (1) , (2) то тоже тело нах-ся в равновесии

1 )Q<(d/r)P,d/r£f тело нах-ся в равновесии

2) Q> (d/r)P , Q>fP в этом случае происходит качение, но без скольжения

3) Q> (d/r)P , Q<fP в этом случае происходит качение со скольжением

4) Q< (d/r)P , Q>fP чистое скольжение

Поскольку в основном выполняется условие 1, то качение наступает быстрее, чем скольжение и поэтому подшипники намного эффективнее, чем скользящие приспособления.

Аналогично моменту трения качения можно ввести момент трения верчения, Коэф-т трения верчения меньше, чем коэя-т трения качения.

Произвольная простр.система сил Частный случай приведения произвольной простр.системы сил. Инвариантная система сил.



Представим себе, что мы привели систему к какому-либо центру 0, что произойдет с сист.сил, если изменить центр приведения на некий новый центр О1.

Lo-векто свободный

{R’’, R’}~0

R=R’=R’’

MO1=[O1O ´R]

LO1=LO+[O1O ´R]= LO-[O1O ´R’]

При перемене центра приведения главный вектор сохраняется, а гл.момент меняется на вел-ну момента силы отн-но нового центра приведения.

Инвариантом наз-сятакая вел-на, кот-я не меняется при изменении центра приведения.

Т.о. мы обнаружили 1-й инвариант-это главный вектор.

(LO1´R)=(( LO+[O1O ´R] )R)

(LO1´R)=( LO´R)+( [O1O ´R] R)

(LO1´R)=( LO´R)

LO1´cosa1= LO´ cosa -эта запись второго инварианта в др.форме: Проекция главного момента на направление главного вектора величина неизменная.

L1xRx+ L1yRy+ L1zRz= LxRx+ LyRy+ LzRz

Частный случай приведения произвольной плоской системы сил.

1)Приведение системы сил к паре сил

В этом случае LO¹0, R=0. При изменении центра приведения главный момент не меняется.

2)Система сил приводится к равнодействующей

а)R*=R; LO=0

Относительно любой точки, лежащей на линии действия равнодействующей система сил всегда будет приводится к равнодействующей R, но отн-но какого-либо др.центра приведения сист.сил уже не будет приводиться к равнодействующей.

Б) LO¹0 R¹0, LO^ R.

Покажем, что в этом случае сист.сил приводится к равнодействующей.

R=R’=R*

{R, LO }~{ R=R’=R*}~{R*}

LO=Rd

{R, R’}~0

В этом случае сист.приводится к равнодействующей, кот.лежит на растоянии d от линии дей-я силы R , определяемое по ф-ле: d=Lo/R

3)Система сил приводится к Динамо. Это когда гл.вектор и гл.момент лежат на одной прямой.

Случай, когда сист.сил приводится к Динамо



LO¹0 R¹0, причем LO не^ R.

LO1=LOcosa;

LO2=LOsina; d=LO2/R

Уравнение динамической оси.

LО1x/Rx= LО1y/Ry= LО1z/Rz-ур-е прямой в простанств.сист.координат

LО1= LО +[O1O ´R]

LО1= LО +[OO1 ´R’]

[LОx+(y Rz -z Rx]/ Rx=[LОy+(z Rx -x Rz]/ Ry=[LОz+(x Ry -y Rx]/ Rz –уравнение динамической линии(ур-е прямой на которой выполняется динамо)

[LОx+(y Rz -z Ry]/ Rx=[LОy+(-x Rz +z Rx]/ Ry=[LОz+(x Ry -y Rx]/ Rz

i j k

x y z

Rx Ry Rz

[LОx -(y Rz’ -z Ry’]/ Rx=[LОy -(z Rx’ -x Rz’]/ Ry=[LОz -(x Ry’ -y Rx’]/ Rz

Равнодействующая 2-х параллельных сил,направл-х в одну сторону

R*=F1+F2

F1/F2 =а/в, F1´а= F2´в

МR*(F1)=- МR*(F2); LO-гл.момент

При пирведении сист.сил к какому-либо центру у нас появляется гл.вектор = сумме всех сил и гл.момент = сумме моментов всех сил отн-но того же центра. Поэтому равнодействующая 2-х параллельных сил, напр-х в одну сторону (лежит) и проходит между этими силами, по вел-не равна сумме этих сил и приложена в точке, которая делит растояние между этими силами на части обратно пропорциональные силам.

Равнодействующая 2-х параллельныхсил, напр-х в разные стороны

F2> F1 , R*= F2- F1, F1/F2 = а/в, F1/а= F2/в=( F2- F) /в-а, F1´в= F2´а, Мс (F2)= Мс(F1);

Равнод-я 2-х парал-х сил, напр-х в разные стороны, лежит за линией действия большей силы, равна по модулю разности двух этих сил и приложена в точке, которая делит растояние между этими силами на части, обратно пропорциональные силам внешним образом.

Очень важно, что силы не равны между собой.

Центр параллельных сил.

Т.С –центр парал-х сил.

R*=låFi,

На основании теоремы Вариньона запишем: момент равнодействующей относит.какого-либо центра равен сумме моментов всех сил относит.того же центра

Мо (R*)= åМо Fк,

[rc´R*]= å[rк ´Fк]

[rc´(åFi)l] - å[rк ´Fкl]=0

[(åFirc - åFkrk) ´l]=0

Т.к. вектор l отличен от 0, то из этого соотношения следует, поскольку вектор l выбирают произвольно, то rcåFк- åFkrk=0 Þ rc=(åFkrk)/ åFк формула нахождения центра тяжести.

Нахождение центров тяжести

rc=(åРkrk)/ åРк –ф-ла нах-я ц.т.

Р1=m1g; Pk=mkg; Pn=mng.

rc=(åmkrk)/ M–ф-ла нах-я ц.т.

M=åmk

xc=(åmkxk)/ M; yc=(åmkyk)/ M; zc=(åmkzk)/ M

Для сплошного однородного тела имеем след.ф-лу для нах-я центра масс.

xc=(òх dV)/V; yc=(òу dV)/V; zc=(òz dV)/V; V=òdV

Для тел, масса кот-х распределена по пов-ти небольшой толщины имеем след-е ф-лы:

xc=(òх ds)/S; yc=(òу ds)/S; zc=(òz ds)/S; S=òds

Для тел, масса кот-х распределена по длине (типа проволоки):

xc=(òх dl)/L; yc=(òу dl)/L; zc=(òz dl)/L; L=òdl

Свойства центров масс

Если тело имеет ось симметрии, плоскость симметрии, то центр масс обязательно располагается на них.

Метод отрицательных масс.

S1-вся площадь

S2- площадь выреза

С –центр масс тела без выреза площади S2

xc=[(S1-S2)xc*+ S2xc2]/S1

xc*= (xc S1- xc2 S2)/( S1- S2)

c*-центр масс тела с вырезом

Из этой ф-лы следует, что если надо опр-ть центр масс тела, у кот-х есть вырез, то надо считать, что в вырезе сосредоточена отрицательная масса.

Цент тяжести некоторых простейших тел.

Разбиение на ¥

ВД-медиана

ВС*/С*Д=2/1

Центр тяжести в точке пересечения медиан.

Центр тяжести дуги.

Ус=0, хс=òхdl/L

L=2ar

х=rcosj; dl=rdj;

хc=(1/2ar) òr2cosj dj =(r/2a)sinj ½= (r/2a)2sina= (r sina)/a;

Ц.т.кругового сектора

хс=(2/3) (r sina)/a);

Ц.т.кругового сегмента

хс=[S2xc2 – S1xc1]/(S2 – S1)

S2=a r2

S1=(1/2)r2 sin 2a

2p - p r2, 2a - x, x=(2a/2p)p r2,

xc={[(a r2)(2/3)r (sin a/a)]-[(1/2) r2 sin 2a][(2/3) rcosa]} /[(a r2)-[(1/2) r2 sin 2a]

=(2/3)r[sin3a /(2a- sin2a]

 

Кинематика

Это раздел механики, в котором изучается движение материальной точки, твердых тел, механических систем, без учета сил, вызывающих это движение

Кинематика точки

Сущ-ет 3 способа задания дв-я точки: векторный, координатный, естественный.

При векторном способе задания точки откладываются векторы из одной точки.

Задается r, как ф-ция от времени r=r(t)

Кривая, которую вычерчивает конец вектора, отложенный из одной общей точки наз-ся гадографом.

Гадограф радиуса вектора точки – это траектория точки.

V=lim(Dr/Dt)=dr/dt –скорость

Отсюда вывод-скорость направлена по касательной к траектории точки.

W= lim(Dv/Dt)=dv/dt – ускорение

При коорд.способе задания точки берем коорд.сетку: оси x, y, z

x=f1(t)

y= f2(t)

z= f3(t)

Vx=x=d f1/Dt Wx=x=

Vy=y=d f2/Dt Wy=y=

Vz=z=d f3/Dt Wz=z=

V=ÖVx2 + Vy2 + Vz2

W=ÖWx2 + Wy2 + Wz2

cos(V,x)= Vx/V

cos(V,y)= Vy/V

cos(V,z)= Vz/V

Естественный способ задания дв-я точки.

При естеств.способе задания дв-я точки д.б.задано: 1)траектория дв-я точки, 2)начало отсчета на траектории, 3)положительное и отрицательное направление отсчета, 4)дуговая абсцисса д.б.задана как ф-ция от времени S=f(t)

Введем единичный орт касательный t. Вектор t направлен в сторону возрастания дуговой абсциссы, модуль êtê=1

Вектор скорости V опр-ся: V=s t.

Если s>0, то скорость направлена в сторону возрастания дуговой абсциссы по вектору t, а если s<0, то вектор скорости напрвлен в сторону убывания дуговой абсциссы.

V=s- алгебраическое зн-е скорости.

Введем элементы диф.геометрии.

Предельное положение пл-ти t1М1t2’ при стремлении М2 к М1 наз-ся соприкасающейся пл-тью.

В каждой точке кривой введем нормальную пл-ть, как пл-ть ^ вектору t.

Пересечение нормальной пл-ти с соприкасающейся пл-тью дает направление главной нормали. Поэтому введем едиинчный орт направления главной нормали n направлена по напр-ю гл.нормали., т.е.по отношению к кривой мы имеем:

Введем 3-й вектор –вектор бинормали в, так что вектора t, n и в составляли правую тройку векторов. Эти три вектора определяют оси естественного трехгранника. С каждой точкой кривой связаны 3 взаимно ^ оси t, n, в

V=dr/dt=(dr/ds)/(ds/dt)=st

ïdr/dsï=ïdrï/ïdsï=1

t направлен в сторону возрастания дуговой абсциссы


Эта страница нарушает авторские права

allrefrs.ru - 2019 год. Все права принадлежат их авторам!