Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Поправки,вносимые дифракционной теорией в геометрическую теорию изображения



Изображение, возникающее в действительности при преломлении и отражении света, заметно отличается от геометрического изображения, существующего лишь в нашем представлении.

Рассматривая в сильный окуляр изображение звезды, образованное объективом, мы замечаем, что оно не является точкой, как того требует только что разобран­ная геометрическая схема, а выглядит кружком, окру­женным несколькими концентрическими кольцами, яркость которых быстро убывает к периферии .(рис, 2.20).

 

Рис. 2.20. Вид изображений светящихся точек различной яркости при их рассматривании в фокусе объектива с помощью сильного окуляра.

Но этот светлый кружок — не истинный диск звезды, а видимый результат явления дифракции света.

Светлый центральный кружок называется дифракционным диском,а окружающие его кольца носят название дифракционных колец. Как показывает теория, видимый угловой поперечник дифракционного диска зависит от длины волны света (т. е. от цвета падающих лучей) и от диаметра объектива. Эта зависимость выражается следующей формулой:

D

где ρ — угловой радиус дифракционного диска (при наблюдении его из центра объектива), D — диаметр свободного отверстия объектива (в сантиметрах) и λ— длина волны света (в сантиметрах). Это выражение дает угловой радиус диска в радианах; для перевода в градусные меры (секунды дуги) его нужно умножить на значение радиана в секундах. Следовательно,

D 206 265 секунд дуги.

Под таким углом радиус дифракционного диска виден из центра объектива; под таким же углом он проектируется из центра объектива на небесную сферу. Угловой поперечник его будет, разумеется, вдвое больше. Это равносильно тому, как если бы истинный диск наблюдаемой звезды имел та-кой угловой поперечник.

Линейный радиус дифракционного диска находится по формуле •

r = ρ f, откуда r =l,22λƒ/ D.

Таким образом, угловые размеры дифракционной картины изображения определяются диаметром объектива и длиной волны света (цветом лучей) и от f не зависят, а линейныеразмеры зависят от относительного фокуса и длины волны света, но не зависят от D. Подобным же образом от тех же величин зависят и размеры дифракционных колец, окружающих центральный диск. Из того, что размер колец зависит от длины световой волны, ясно, что в случае белого света они должны быть окрашены в радужные цвета; в действительности можно заметить, что внутренние края колец. имеют синюю окраску, а наружные — красную (так как длина волны синих лучей меньше длины волны красных).



Из этих немногих сведений можно сделать выводы,; имеющие большое значение для работы с телескопом: 1) чем больше диаметр объектива, тем мельче подробности, различаемые с его помощью; 2) для каждого объектива существует наименьшее угловое расстояние между двумя светящимися точками (например, звездами), которые еще возможно различить раздельно с помощью данного объектива; это наименьшее угловое расстояние называется предельным углом разрешения или; разрешаемым угломи является фундаментальной характеристикой объектива, по которой оценивается его разрешающая сила. Чем меньше предельный угол разрешения, тем выше разрешающая сила объектива.

Реальное значение разрешающей силы станет нам вполне ясным, если мы будем наблюдать двойные звезды с малыми угловыми расстояниями между компонентами. Если бы изображения звезд в фокусе объектива были точками, то при сколь угодно малом расстоянии они наблюдались бы как раздельные; в достаточно сильный окуляр мы рассмотрели бы две раздельные точки. Но в действительности благодаря дифракции;



изображения звезд — не точки, а кружки; а раз так, то при определенном минимальном расстоянии их изображения коснутся друг друга, и при дальнейшем уменьшении расстояния между компонентами они, все более и более налагаясь друг на друга, сольются в одно слегка продолговатое пятнышко (рис.2.21.). Реально

 

 

Рис. 2.21. Изображения двух Звезд сливаются, если угловое расстояние между ними меньше разрешающей силы телескопа.

 

существующие две отдельные звезды будут казаться одной, и ни в какой окуляр нельзя будет увидеть два изображения. Единственная возможность увидеть две столь близкие звезды раздельно —это использовать объектив с большим свободным отверстием, так как он изобразит их в виде кружков меньшего углового размера.

Подставим теперь в формулу, выражающую угловой радиус дифракционного диска, величину длины волны света, взяв зелено-желтые лучи (к которым глаз наиболее чувствителен) со средней длиной волны λ= 0,00055 мм

ρ = 1.22 λ/D 206265 = 1.22 0.00055/ D 206265= 138/ D (секунд дуги)

пли, округляя,

D (секунд дуги),

Где Dвыражено в миллиметрах.

Такой же подстановкой получим значение для линейного радиуса дифракционного диска (для тех же лучей)

r = 1,22 • 0,00055 •ƒ/ D = 0,00067 ƒ/ D мм = 0,67 ƒ/ D мкм.

Эти числа говорят сами за себя. Как бы ни была мала светящаяся точка, ее угловой радиус при рассматривании в объектив с диаметром свободного отверстия, равным 140 мм. не может быть меньше 1"; она будет представляться, следовательно, кружком диаметром в 2".Если мы вспомним, что истинный угловой диаметр звезд редко превышает тысячные доли секунды, то станет ясно, сколь еще далеко от истины представление о предмете, даваемое таким объективом, хотя телескоп с объективом диаметром в 140 мм уже принадлежит к числу довольно сильных инструментов. Здесь уместно указать, что угловой радиус дифракционного диска, даваемого 200-дюймовым рефлектором (D == 5000мм), равен 140/5000 ~ 0",03—как раз величина наибольшего известного истинного углового диаметра звезды.

Угловой диаметр дифракционного диска не зависит от фокусного расстояния, а линейный его поперечник определяется относительным отверстием объектива. С тем же 140-мм объективом при относительном отверстии 1:15 линейный диаметр дифракционного диска будет

2r= 2 • 0,00067 • 15 ~ 0,02 мм~ 20 мкм.

Не входя в подробности теории, которые завели бы нас слишком далеко, скажем, что фактическая величина предельного угла разрешения несколько меньше, чем угловой радиус дифракционного диска. Изучение этого вопроса приводит к выводу, что за меру разрешаемого угла практически можно принять дробь 120/D(при условии равенства блеска составляющих двойной звезды). Таким образом, объектив с диаметром свободного отверстия в 120 мм может на пределе разделить двойную звезду с расстоянием компонент равного блеска.На поверхности Марса вэпохи великих противостояний (угловой диаметр диска около 25") с помощью такого объектива можно еще различить два объекта, лежащие друг от друга на расстоянии 1/25 видимого диаметра диска планеты, что соответствует примерно 270 км; на Луне могут быть раздельно видны объекты, находящиеся на расстоянии двух километров друг от друга.

Под разрешающей способностью телескопа принято понимать разрешающуюспособность его объектива. Телескопы предназначены для наблюдения удаленных объектов (звезд). Пусть с помощью телескопа, объектив которого имеет диаметр D, рассматриваются две близкие звезды, находящиеся на угловом расстоянии θ.Изображение каждой звезды в фокальной плоскости объектива имеет линейный размер (радиус пятна Эйри), равный 1.22 λF/D. При этом центры изображений находятся на расстоянии y*F. Как и в случае спектральных приборов, при определении дифракционного предела разрешения используется условный критерий Рэлея (рис. 2.22). Разница состоит в том, что в случае спектральных приборов речь идет о разрешении двух близких спектральных линий по их изображениям, а в случае оптических инструментов – о разрешении двух близких точек объекта.
 
Рис. 2.22 Предел разрешения изображений двух близких звезд по Рэлею Согласно критерию Рэлея, две близкие точки объекта считаются разрешенными, если расстояние между центрами дифракционных изображений равно радиусу пятна Эйри. Применение критерия Рзлея к объективу телескопа дает для дифракционного предела разрешения: (2.6)Следует отметить, что в центре кривой суммарного распределения интенсивности (рис. 2.24.) имеется провал порядка 20 % и поэтому критерий Рэлея лишь приблизительно соответствует возможностям визуального наблюдения. Опытный наблюдатель уверенно может разрешать две близкие точки объекта, находящиеся на расстоянии в несколько раз меньшем ymin.Числовая оценка дает для объектива диаметром D = 10 см, ymin = 6,7*10-6 рад = 1,3”, а для D=102 см, ymin = 0,13”.Этот пример показывает, насколько важны большие астрономические инструменты.Крупнейший в мире действующий телескоп-рефлектор имеет диаметр зеркала D = 6 м.Теоретическое значение предела разрешения такого телескопа ymin =0,023”. Для второго по величине телескопа-рефлектора обсерватории Маунт-Паломар с D = 5 м теоретическое значение ymin = 0,028”. Однако, нестационарные процессы в атмосфере позволяют приблизиться к теоретическому значению предела разрешения таких гигантских телескопов лишь в те редкие кратковременные периоды наблюдений. Большие телескопы строятся главным образом для увеличения светового потока, поступающего в объектив от далеких небесных объектов. Параметры телескопа Хаббл находящегося на орбите Земли на высоте 570 км. с периодом обращения 96мин. следующие: D =2,4м , ƒ=57.6м, ƒ/D= 24, рефрактор системы Ричи- Критьена с оптическим разрешением 0.05 сек. Допуск на форму поверхности 1/20λ,покрытие зеркала Al (d=75нм) и защита MgF2 (d=25нм). 2.4.2. Разрешающая способность глаза.
 
2.7Все сказанное выше о пределе разрешения объектива телескопа относится и к глазу. На сетчатке глаза при рассмотрении удаленных объектов формируется дифракционное изображение. Поэтому формула (2.6) применима и к глазу, если под D понимать диаметр зрачка d3p . Полагая d3p = 3 мм, λ = 550 нм, найдем для предельного разрешения человеческого глаза: формула 2.7.Известно, что сетчатка глаза состоит из светочувствительных рецепторовконечного размера. Полученная выше оценка находится в очень хорошем согласии с физиологической оценкой разрешающей способности глаза. Оказывается, что размер дифракционного пятна на сетчатке глаза приблизительно равен размеру светочувствительных рецепторов. В этом можно усмотреть мудрость Природы, которая в процессе эволюции стремится реализовать оптимальные свойства живых организмов. 2.4.3. Предел разрешения микроскопаС помощью микроскопа наблюдают близко расположенные объекты, поэтому его разрешающая способность характеризуется не угловым, а линейным расстоянием между двумя близкими точками, которые еще могут восприниматься раздельно. Наблюдаемый объект располагается вблизи переднего фокуса объектива Интерес представляет линейный размер деталей объекта, разрешаемых с помощью микроскопа. Изображение, даваемое объективом, располагается на достаточно большом расстоянии L>>F. У стандартных микроскопов L = 16 см, а фокусное расстояние объектива – несколько миллиметров. Часто пространство перед объективом заполняется специальной прозрачной жидкостью – иммерсией, показатель преломления которой n > 1 (рис.2.24). В плоскости, геометрически сопряженной объекту, располагается его увеличенное изображение, которое рассматривается глазом через окуляр. Изображение каждой точки оказывается размытым вследствие дифракции света.Радиус пятна Эйри в плоскости изображения равен 1.22λ L/D, где D – диаметр объектива. Следовательно, микроскоп позволяет разрешить две близкие точки объекта, если центры их дифракционных изображений окажутся на расстоянии , превышающим радиус дифракционного пятна (критерий Рэлея). (2.7)
Рис. 2.23.К условию синусов Аббе. Здесь a*= D/2L – угол, под которым виден радиус объектива из плоскостиизображения (рис. 2.23). Чтобы перейти к линейным размерам самого объекта, следует воспользоваться так называемым условием синусов Аббе, которое выполняется для любого объектива микроскопа:ℓ n sinα = ℓ1 n1 sinα1 (2.8)Принимая во внимание малость угла α1 можно записатьℓ n sinα = ℓ1 n1 α1 и исключая ℓ1 и α1для предела разрешения объектива микроскопа получаем выражение: (2.9)

Впервые предел разрешения объектива микроскопа был определен в 1874 г. немецким физиком Г. Гельмгольцем, формула (2.9) называктся формулой Гельмгольца

Здесь λ – длина волны, n – показатель преломления иммерсионной жидкости, α – так называемый апертурный угол (рис.2.20). Величина nsinα называется числовой апертурой.

Рис. 2.24.

Иммерсионная жидкость перед объективом микроскопа

У хороших микроскопов апертурный угол α близок к своему пределу: α ≈π/2. Как видно из формулы Гельмгольца, применение иммерсии несколько улучшает предел разрешения. Полагая для оценок sinα≈1, n≈1,5, получим:

lmin≈0,4λ.

Таким образом, с помощью микроскопа принципиально невозможно рассмотреть какие-либо детали, размер которых значительно меньше длины волны света. Волновые свойства света определяют предел качества изображения объекта, полученного с помощью любой оптической системы.

2.4.4. Замечание о нормальном увеличенииоптических инструментов. Как в телескопе, так и в микроскопе изображение, полученное с помощью объектива, рассматривается глазом через окуляр. Для того, чтобы реализовать полностью разрешающую способность объектива система окуляр–глаз не должна вносить дополнительных дифракционных искажений. Это достигается целесообразным выбором увеличения оптического инструмента (телескопа или микроскопа). При заданном объективе задача сводится к подбору окуляра. На основании общих соображений волновой теории можно сформулировать следующее условие, при котором будет полностью реализована разрешающая способность объектива: диаметр пучка лучей,выходящих из окуляра не должен превышать диаметра зрачка глаза d3p .Таким образом, окуляр оптического инструмента должен быть достаточнокороткофокусным. . Рис. 2.24 Телескопический ход лучей Поясним это утверждение на примере телескопа. На рис. 2.24 изображентелескопический ход лучей.
   
   
2.10Две близкие звезды, находящиеся на угловом расстоянии ymin в фокальной плоскости объектива изображаются дифракционными пятнами, центры которых располагаются на расстоянии yminF1. Пройдя через окуляр, лучи попадут в глаз под углом yminF1/F2 . Этот угол должен быть разрешимым для глаза, зрачок которого имеет диаметр d3pТаким образом:Здесь g = F1/F2 – угловое увеличение телескопа. ОтношениеD/g имеет смысл диаметра пучка, выходящего из окуляра. Знак равенства в (2.10) соответствует случаю нормального величения. (2.11)В случае нормального увеличения диаметр пучка лучей, выходящих из окуляра, равендиаметру зрачка d3p . При g>gN в системетелескоп–глаз полностью используется разрешающая способность объектива.Аналогичным образом решается вопрос об увеличении микроскопа. Под увеличением микроскопа понимают отношение углового размера объекта, наблюдаемого через микроскоп, к угловому размеру самого объекта, наблюдаемого невооруженным глазом на расстоянии наилучшего зрения d, которое для нормального глаза полагается равным 25 см. Расчет нормального увеличения микроскопа приводит к выражению: (2.12)Вывод формулы (2.12) является полезным упражнением для студентов. Как и в случае телескопа, нормальное увеличение микроскопа есть наименьшееувеличение, при котором может быть полностью использована разрешающаяспособность объектива. Следует подчеркнуть, что применение увеличений больше нормального не может выявить новые детали объекта. Однако, по причинам физиологического характера при работе на пределе разрешения инструмента целесообразно иногда выбирать увеличение, превосходящее нормальное в 2–3 раза. ЗаключениеПрактическое значение оптики и её влияние на другие отрасли знанияисключительно велики. Изобретение телескопа и спектроскопа открыло перед человеком удивительнейший и богатейший мир явлений , происходящих в необъятной Вселенной. Изобретение микроскопа произвело революцию в биологии. Фотография помогла и продолжает помогать чуть ли не всем отраслям науки. Одним из важнейших элементов научной аппаратуры является линза. Без неё не было бы микроскопа, телескопа, спектроскопа, фотоаппарата, кино , телевидения и т.п. не было бы очков, и многие люди, которым перевалило за 50 лет, были бы лишены возможности читать и выполнять многие работы , связанные со зрением.Область явлений, изучаемая физической оптикой, весьма обширна. Оптические явления теснейшим образом связаны с явлениями, изучаемыми в других разделах физики, а оптические методы исследования относятся к наиболее тонким и точным. Поэтому неудивительно , что оптике на протяжении длительного времени принадлежала ведущая роль в очень многих фундаментальных исследованиях и развитии основных физически воззрений. Достаточно сказать, что обе основные физические теории прошлого столетия - теория относительности и теория квантов- зародились и в значительной степени развились на почве оптическихисследований. Изобретение лазеров открыло новые широчайшие возможности не только в оптике, но и в её приложениях в различных отраслях науки и техники.

Содержание контрольных вопросов.

1. Определить кратность увеличения лупы с фокусом 50мм.

2. Определить фокусное расстояние объектива с увеличением 30х.

3. Определить суммарную оптическую силу двух объективов с кратностью увеличения 5х и 15х.

4. Составить оптическую схему микроскопа с увеличением 1500х с использованием микрообъективов из ряда фокусных расстояний ƒ= 5;10;20;25;30;35мм и окуляров с кратностью увеличения Г =15;20;25;30;40. Определить при этом длину тубуса.

5. Рассчитать дифракционный радиус Релея для телескопа с диаметром входного зрачка 120мм.

6. Определить линейный размер аберрационного пятна для телескопа с апертурой 300мм. и фокусным расстоянием 2.4м.от звезды.

7. Рассчитать параметры телескопа для разрешения объекта на Луне размером 15м.

8. Как выглядят звёзды при наблюдении в телескоп? Меняется ли их вид в зависимости от увеличения?

9. Каков наибольший диаметр объектива у современных рефракторов?

10. Что оказывает наибольшие помехи при наблюдениях звёзд в земных условиях?

11. Каков наибольший диаметр объектива у современных рефлекторов?

12. Что является объективом у телескопа рефлектора? Кто первый построил телескоп рефрактор?

13. Нарисуйте схему менискового телескопа.

14. Чем определяется светосила телескопа?

15. Назовите три самых ярких объекта земного неба.

16. Зачем нужен мениск у менискового телескопа?

17. Нарисуйте схему рефлектора.

18. Чем определяется увеличение телескопа?

19. Каково назначение окуляра?

20. Нарисуйте схему рефрактора.

21. Для чего используют телескопы при наблюдении Луны и планет?

22. Кто первый построил телескоп рефлектор?

23. Для чего используют телескопы при наблюдении звёзд?

24. Какими характеристиками визуально отличаются звёзды друг от друга?

25. Какими характеристиками визуально отличаются звёзды от планет?

26. Приведите названия трёх любых звёзд.

27. Приведите названия трёх любых созвездий.

28. Какой кривизны зеркало устанавливают на рефлекторах?

29. Кто первый построил менисковый телескоп?

30. Какие ещё телескопы, кроме оптических, вы знаете?

31. Почему при наблюдении Луны и планет в телескоп используют увеличение не более 500-600 раз? Каково назначение объектива

32. Какие параметры объектива определяют разрешающую способность.

33. Какой параметр объектива определяет линейный поперечник дифракционного диска.

34. Предел разрешения микроскопа.

35. Какова ширина пучка при засветке газовым лазером с расходимостью 1` (одна угл. мин.) на расстоянии 10 км.

36. В чем заключается принцип Гюйгенса-Френеля и явления дифракции электромагнитных волн

37. В чем состоит метод зон Френеля? Как разбить волновой фронт на зоны Френеля?

38. Что происходит с освещенностью центральной точки экрана при приближении или удалении от него непрозрачной плоскости с отверстием?

39. Зная диаметр отверстия ,длину волны света и расстояние от точечного источника света S до экрана , определить,на какое минимальное целое число зон Френеля может быть разбито отверстие в опыте Френеля?

40. Как определить размер дифракционного изображения круглого отверстия в сходящейся волне? Как зависит этот размер от величины отверстия? От расстояния до экрана?

 


Просмотров 1638

Эта страница нарушает авторские права

allrefrs.ru - 2020 год. Все права принадлежат их авторам!