Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Моль. Эквиваленты и молярные массы эквивалентов простых и сложных веществ. Закон эквивалентов 6 часть



 

(–)Fe | H2O, O2 | Fe(+),

 

анод (Fe) – Fe0 – 2 = Fe2+,

катод (Fe) – 2H2O + O2 + 4 = 4OH,

 

Fe2+ + 2OH = Fe(OH)2 Fe(OH)3.

Задания

 

211. Как происходит атмосферная коррозия луженого и оцинкованного железа при нарушении покрытия? Составьте электронные уравнения анодного и катодного процессов.

212. Медь не вытесняет водород из разбавленных кислот. Почему? Однако если к медной пластинке, опущенной в кислоту, прикоснуться цинковой, то на меди начинается бурное выделение водорода. Дайте этому объяснение, составив электронные уравнения анодного и катодного процессов. Напишите уравнение протекающей химической реакции.

213. Как происходит атмосферная коррозия луженого железа и луженой меди при нарушении покрытия? Составьте электронные уравнения анодного и катодного процессов.

214. Если пластинку из чистого цинка опустить в разбавленную кислоту, то начинающееся выделение водорода вскоре почти прекращается. Однако при прикосновении к цинку медной палочкой из последней начинается бурное выделение водорода. Дайте этому объяснение, составив электронные уравнения анодного и катодного процессов. Напишите уравнение протекающей химической реакции.

215. В чем заключается сущность протекторной защиты металлов от коррозии? Приведите пример протекторной защиты никеля в электролите, содержащем растворенный кислород. Составьте электронные уравнения анодного и катодного процессов.

216. Если на стальной предмет нанести каплю воды, то коррозии подвергается средняя, а не внешняя часть смоченного металла. После высыхания капли в ее центре появляется пятно ржавчины. Чем это можно объяснить? Какой участок металла, находящийся под каплей воды, является анодным и какой катодным. Составьте электронные уравнения соответствующих процессов.

217. Если гвоздь вбить во влажное дерево, то ржавчиной покрывается та его часть, которая находится внутри дерева. Чем это можно объяснить? Анодом или катодом является эта часть гвоздя? Составьте электронные уравнения соответствующих процессов.

218. В раствор соляной кислоты поместили цинковую пластинку и цинковую пластинку, частично покрытую медью. В каком случае процесс коррозии цинка происходит интенсивнее? Ответ мотивируйте, составив электронные уравнения соответствующих процессов.

219. Почему химически чистое железо является более стойким против коррозии, чем техническое железо? Составьте электронные уравнения анодного и катодного процессов, происходящих при коррозии технического железа во влажном воздухе и в сильнокислой среде.



220. Какое покрытие металла называется анодным и какое катодным? Назовите несколько металлов, которые могут служить для анодного и катодного покрытия железа. Составьте электронные уравнения анодного и катодного процессов, происходящих при коррозии железа, покрытого медью во влажном воздухе и в сильнокислой среде.

221. Железное изделие покрыли кадмием. Какое это покрытие – анодное или катодное? Почему? Составьте электронные уравнения анодного и катодного процессов коррозии этого изделия при нарушении покрытия во влажном воздухе и в соляной кислоте. Какие продукты коррозии образуются в первом и во втором случаях?

222. Железное изделие покрыли свинцом. Какое это покрытие – анодное или катодное? Почему? Составьте электронные уравнения анодного и катодного процессов коррозии этого изделия при нарушении покрытия во влажном воздухе и в соляной кислоте. Какие продукты коррозии образуются в первом и во втором случаях?

223. Две железные пластинки, частично покрытые одна оловом, другая медью, находятся во влажном воздухе. На какой из этих пластинок быстрее образуется ржавчина? Почему? Составьте электронные уравнения анодного и катодного процессов коррозии этих пластинок. Каков состав продуктов коррозии железа?

224. В обычных условиях во влажном воздухе оцинкованное железо при нарушении покрытия не ржавеет, тогда как при температуре выше 70 °С оно покрывается ржавчиной. Чем это можно объяснить? Составьте электронные уравнения анодного и катодного процессов коррозии оцинкованного железа в первом и во втором случаях.

225. Если пластинку из чистого железа опустить в разбавленную серную кислоту, то выделение на ней водорода идет медленно и со временем почти прекращается. Однако если цинковой палочкой прикоснуться к железной пластинке, то на последней начинается бурное выделение водорода. Почему? Какой металл при этом растворяется? Составьте электронные уравнения анодного и катодного процессов.



226. Цинковую и железную пластинки опустили в раствор сульфата меди. Составьте электронные и ионные уравнения реакций, происходящих на каждой из этих пластинок. Какие процессы будут проходить на пластинках, если наружные концы их соединить проводником?

227. Как влияет рН среды на скорость коррозии железа и цинка? Почему? Составьте электронные уравнения анодного и катодного процессов атмосферной коррозии этих металлов.

228. В раствор электролита, содержащего растворенный кислород, опустили цинковую пластинку и цинковую пластинку, частично покрытую медью. В каком случае процесс коррозии цинка происходит интенсивнее? Составьте электронные уравнения анодного и катодного процессов.

229. Магниевую и никелевую пластинки опустили в раствор нитрата меди. Составьте электронные и ионные уравнения реакций, происходящих на каждой из этих пластинок. Какие процессы будут проходить на пластинках, если наружные концы их соединить проводником?

230. Как протекает атмосферная коррозия железа, покрытого слоем никеля, если покрытие нарушено? Составьте электронные уравнения анодного и катодного процессов. Каков состав продуктов коррозии?

 

Общие свойства металлов

Пример 1.К какому классу соединений относятся вещества, получаемые при действии избытка раствора аммиака на растворы AgNO3, Hg(NO3)2, Zn(NO3)2?

Составьте молекулярные и ионные уравнения реакций.

Решение. При действии избытка раствора аммиака на растворы приведенных в условии задачи солей протекают следующие реакции:

 

AgNO3 + 2NH4OH = [Ag(NH3)2]NO3 + 2H2O,

Hg(NO3)2 + 4NH4OH = [Hg(NH3)4](NO3)2 + 4H2O,

Zn(NO3)2 + 4NH4OH = [Zn(NH3)4](NO3)2 + 4H2O.

 

Уравнения реакций в сокращенной ионной форме:

 

Ag+ + 2NH4OH = [Ag(NH3)2]+ + 2H2O,

Hg2+ + 4NH4OH = [Hg(NH3)4]2+ + 4H2O,

Zn2+ + 4NH4OH = [Zn(NH3)4]2+ + 4H2O.

 

При действии избытка аммиака образуются соединения: [Ag(NH3)2]NO3, [Hg(NH3)4](NO3)2, [Zn(NH3)4](NO3)2, которые относятся к классу комплексных соединений.

 

Пример 2.Какие степени окисления проявляет марганец в соединениях? Составьте формулы оксидов марганца, отвечающих этим степеням окисления. Как меняются кислотно-основные свойства оксидов марганца при переходе от низшей к высшей степени окисления? Составьте уравнения реакций взаимодействия оксида марганца (II) с серной кислотой и оксида марганца (III) с гидроксидом калия.

Решение. В соединениях марганец проявляет пять степеней окисления - (+2, +3, +4, +6, +7), но образует всего четыре простых устойчивых оксида: MnO – оксид марганца(II), Mn2O3 – оксид марганца(III), MnO2 – оксид марганца(IV) и Mn2O7 – оксид марганца(VII). Первые два оксида MnO и Mn2O3 обладают основными свойствами.

Оксид марганца(IV) амфотерен со слабо выраженными кислотными и основными свойствами. Высший оксид марганца Mn2O7 является типичным кислотным оксидом. Триоксид марганца, отвечающий степени окисления (+6), не получен.

Напишем уравнения реакций, необходимых по условию задачи:

 

MnO + H2SO4 = MnSO4 + H2O.

Mn2O7 + 2KOH = 2KMnO4 + H2O.

 

Пример 3.Составьте электронные и молекулярные уравнения реакций растворения золота в царской водке и взаимодействия вольфрама с хлором. Золото окисляется до степени окисления (+3), а вольфрам - до максимальной.

Решение. Царская водка – это смесь одного объема азотной и трех – четырех объемов концентрированной соляной кислоты. При смешивании кислот образуется хлор в момент выделения, который и окисляет золото:

 

2HNO3 + 6HCl = 3Cl2 + 4H2O + 2NO.

Электронные уравнения:

 

2 | Au0 – 3 = Au3+,

3 | Cl +2 =2Cl.

Молекулярное уравнение реакции:

 

2Au + 2HNO3 + 8HCl = 2H[AuCl4] + 4H2O + 2NO.

 

Максимальная степень окисления вольфрама, как элемента шестой группы, равна (+6). Хлор в данной задаче выступает в роли окислителя и, присоединив электроны, приобретает степень окисления (–1). На основе вышеизложенного составим электронные уравнения:

 

| W – 6 = ,

3 | Cl2 +2 =2Cl–1.

 

Уравнение реакции имеет вид

 

W + 3Cl2 = WCl6.

 

Пример 4.Через подкисленный серной кислотой раствор дихромата калия пропустили газообразный сероводород. Через некоторое время оранжевая окраска перешла в зеленую и одновременно жидкость стала мутной. Составьте молекулярное и электронное уравнения происходящей реакции, учитывая минимальное окисление сероводорода.

Решение. Оранжевая окраска исходного раствора обусловлена ионами Cr2O . Зеленый цвет после пропускания сероводорода сообщают ионы Cr3+.

Следовательно, хром (+6) восстанавливается до хрома (+3). В сероводороде степень окисления серы равна (–2). Минимальное окисление сероводорода означает, что сера (–2) отдает минимальное число электронов и приобретает степень окисления, равную нулю. Составим электронные уравнения:

 

2 | + 3 = ,

3 | S2– – 2 =S0.

На основании электронных уравнений составим молекулярное уравнение реакции:

K2Cr2O7 + 4H2SO4 + 3H2S = 3S¯ + Cr2(SO4)3 + K2SO4 + 7H2O.

 

Пример 5.На гидроксиды хрома (III) и никеля (II) подействовали избытком раствора серной кислоты, едкого натрия и аммиака. Какие соединения хрома и никеля образуются в каждом из этих случаев? Составьте молекулярные и ионные уравнения реакций.

Решение. Гидроксид хрома(III) Cr(OH)3 является амфотерным основанием. Поэтому он взаимодействует и с кислотами, и с гидроксидами:

 

2Cr(OH)3 + 3H2SO4 = Cr2(SO4)3 + 6H2O,

2Cr(OH)3 + 6H+ = 2Cr3+ + 6H2O.

 

Cr(OH)3 + 3NaOH = Na3[Cr(OH)6],

Cr(OH)3 + 3OH = [Cr(OH)6]3–.

 

Cr(OH)3 + 6NH4OH = [Cr(NH3)6](OH)3 + 6H2O,

Cr(OH)3 + 6NH4OH = [Cr(NH3)6]3+ + 3OH + 6H2O.

 

Гидроксид никеля(II) обладает только основными свойствами и с едким натрием не взаимодействует. В серной кислоте и аммиаке он растворяется с образованием комплексных соединений:

 

Ni(OH)2 + H2SO4 + 4H2O = [Ni(H2O)6]SO4,

Ni(OH)2 + 2H+ + 4H2O = [Ni(H2O)6]2+.

 

Ni(OH)2 + 6NH4OH = [Ni(NH3)6](OH)2 + 6H2O,

Ni(OH)2 + 6NH4OH = [Ni(NH3)6]2+ + 6H2O + 2OH.

 

Пример 6.Как получить берлинскую лазурь, имея в качестве исходных веществ железный купорос, азотную кислоту и цианистый калий? Напишите молекулярное и ионные уравнения реакций, приводящих к образованию берлинской лазури из указанных веществ.

Решение. В состав берлинской лазури Fe4[Fe(CN)6]3 входит железо в степени окисления (+2) и (+3).

Последовательность операций.

Делим железный купорос FeSO4 на две части, к первой прибавляем избыток раствора цианистого калия:

 

FeSO4 + 6KCN = K4[Fe(CN)6] + K2SO4,

Fe2+ + 6CN = [Fe(CN)6]4–.

 

Ко второй части приливаем раствор азотной кислоты для окисления железа от (+2) до (+3):

3FeSO4 + 4HNO3 = 3FeNO3SO4 + NO + 2H2O,

3Fe2+ + 4NO3 = 3Fe3+ + NO + 2H2O.

 

Слив оба раствора, получим нерастворимый в воде осадок берлинской лазури:

4FeNO3SO4 + 3K4[Fe(CN)6] = Fe4[Fe(CN)6]3 + 4KNO3 + 4K2SO4,

4Fe3+ + 3[Fe(CN)6]4– = Fe4[Fe(CN)6]3.

 

Пример 7.

Составьте мо екулярные и ионные уравнения реакций, которые необходимо провести для осуществления следующих превращений:

 

Co(OH)2 ® Co(OH)3 ® CoCl2 ® CoOHCl.

Решение. Окисление гидроксида кобальта(II) гипохлоритом натрия:

 

2Co(OH)2 + NaClO + H2O = Co(OH)3 + NaCl,

2Co(OH)2 + ClO + H2O = Co(OH)3 + Cl.

 

При действии кислот на Co(OH)3 получаются соли кобальта(II), а не кобальта(III):

2Co(OH)3 + 6HCl = 2CoCl2 + Cl2­ + 6H2O,

2Co(OH)3 +6H+ + 2Cl = 2Co2+ + Cl2­ + 6H2O.

 

При действии щелочи на раствор соли кобальта(II) при комнатной температуре выпадает осадок основной соли:

 

CoCl2 + NaOH = CoOHCl¯ +NaCl,

Co2+ + Cl + OH = CoOHCl.

 

Пример 8.Могут ли в растворе существовать совместно следующие вещества: FeCl2 и KMnO4; NiCl2 и NaOH; FeCl2 и K4[Fe(CN)6]? Составьте уравнения реакций.

Решение. Указанные пары могут существовать совместно, если между ними не будут протекать окислительно-восстановительные реакции или реакции обмена.

Степень окисления железа в FeCl2, равная (+2), – промежуточная, а марганца в KMnO4, равная (+7), – высшая. Следовательно, эти вещества будут взаимодействовать, причем KMnO4 – окислитель, а FeCl2 – восстановитель.

Напишем реакции:

 

3FeCl2 + KMnO4 + 2H2O = 3FeOHCl2 + MnO2 +KOH,

3Fe2+ + MnO + 2H2O = 3Fe3+ + MnO2.

 

Раствор хлорида никеля содержит только ионы Ni2+ и Cl. Гидроксид натрия также полностью диссоциирует в растворе на ионы Na+ и OH. При смешивании растворов NiCl2 и NaOH ионы Ni2+ и OH связываются друг с другом и образуют нерастворимый в воде гидроксид никеля (II):

 

NiCl2 + 2NaOH = Ni(OH)2 + 2NaCl,

Ni2+ + 2OH = Ni(OH)2¯.

 

В водном растворе FeCl2 и K4[Fe(CN)6] диссоциируют по уравнениям:

 

FeCl2 D Fe2+ + 2Cl,

K4[Fe(CN)6] ® 4K+ + [Fe(CN)6]4–.

 

При смешивании растворов никакие комбинации ионов Fe2+, K+, Cl, [Fe(CN)6]4– не приводят к образованию малорастворимого, летучего или слабо-диссоциирующего вещества. Следовательно, никакой реакции не происходит.

Итак, в растворе могут существовать совместно только FeCl2 и K4[Fe(CN)6].

 

Пример 9.Металлическая ртуть часто содержит примеси так называемых “неблагородных” металлов – цинка, олова, свинца. Для их удаления ртуть взбалтывают в насыщенном растворе сульфата ртути. На чем основан такой способ очистки ртути? Выразите происходящие реакции уравнениями.

Решение. Цинк, олово и свинец стоят в ряду напряжений левее ртути. Поэтому они вытесняют ртуть из растворов ее солей. Составим молекулярные и ионные уравнения протекающих реакций:

 

Zn + HgSO4 = ZnSO4 + Hg,

Zn + Hg2+ = Zn2+ + Hg.

Sn + HgSO4 = SnSO4 + Hg,

Sn + Hg2+ = Sn2+ + Hg.

Pb + HgSO4 = PbSO4 + Hg,

Pb + Hg2+ = Pb2+ + Hg.

 

Задания

 

231. Серебро не взаимодействует с разбавленной серной кислотой, тогда как в концентрированной оно растворяется. Чем это можно объяснить? Составьте электронные и молекулярное уравнения соответствующей реакции.

232. Составьте уравнения реакций, которые надо провести для осуществления следующих превращений: Сu ® Cu(NO3)2 ® Сu(ОН)2 ® CuCl2 ® [Cu(NH3)4]CI2.

233. Составьте электронные и молекулярные уравнения реакций цинка: а) с раствором гидроксида натрия; б) с концентрированной серной кислотой, учитывая восстановление серы до нулевой степени окисления.

234. Составьте уравнения реакций, которые надо провести для осуществления следующих превращений: Ag ® AgNO3 ® AgCl ® [Ag(NH3)2]CI ® AgCl:

235. При постепенном прибавлении раствора KJ к раствору AgNO3 образующийся вначале осадок растворяется. Какое комплексное соединение при этом получается? Составьте молекулярные и ионно-молекулярные уравнения соответствующих реакций.

236. При постепенном прибавлении раствора аммиака к раствору сульфата кадмия образующийся вначале осадок основной соли растворяется. Составьте молекулярные и ионно-молекулярные уравнения соответствующих реакций.

237. При сливании растворов нитрата серебра и цианида калия выпадает осадок, который легко растворяется в избытке KCN. Какое комплексное соединение при этом получается? Составьте молекулярные и ионно-молекулярные уравнения соответствующих реакций.

238. К какому классу соединений относятся вещества, полученные при действии избытка гидроксида натрия на растворы ZnCl2, CdCl2, HgCl2? Составьте молекулярные и электронные уравнения соответствующих реакций.

239. При действии на титан концентрированной хлороводородной (соляной) кислотой образуется трихлорид титана, а при действии азотной – осадок метатитановой кислоты. Составьте электронные и молекулярные уравнения соответствующих реакций.

240. При растворении титана в концентрированной серной кислоте последняя восстанавливается минимально, а титан переходит в катион с максимальной степенью окисления. Составьте электронные и молекулярное уравнения реакции.

241. Какую степень окисления проявляют медь, серебро и золото в соединениях? Какая степень окисления наиболее характерна для каждого из них? Иодид калия восстанавливает ионы меди (+2) в соединения меди со степенью окисления (+1). Составьте электронные и молекулярное уравнения взаимодействия KJ с сульфатом меди.

242. Диоксиды титана и циркония при сплавлении взаимодействуют со щелочами. О каких свойствах оксидов говорят эти реакции? Напишите уравнения реакций между; а) ТiO2 и ВаО; б) ZrO2 и NaOH. В первой реакции образуется метатитанат, а во второй – ортоцирконат соответствующих металлов.

243. На гидроксиды цинка и кадмия подействовали избытком растворов серной кислоты, гидроксида натрия и аммиака. Какие соединения цинка и кадмия образуются в каждой из этих реакций? Составьте молекулярные и ионно-молекулярные уравнения реакций.

244. Золото растворяется в царской водке и в селеновой кислоте, приобретая при этом максимальную степень окисления. Составьте электронные и молекулярные уравнения соответствующих реакций.

245. В присутствии влаги и диоксида углерода медь окисляется и покрывается зеленым налетом. Как называется и каков состав образующегося соединения? Что произойдет, если на него подействовать хлороводородной (соляной) кислотой? Напишите уравнения соответствующих реакции. Окислительно-восстановительную реакцию составьте на основании электронных уравнений.

246. Кусок латуни обработали азотной кислотой. Раствор разделили на две части. К одной из них прибавили избыток раствора аммиака, к другой – избыток раствора щелочи. Какие соединения цинка и меди образуются при этом? Составьте уравнения соответствующих реакций.

247. Ванадий получают алюмотермически или кальций термически восстановлением оксида ванадия(V) V2О5 Последний легко растворяется в щелочах с образованием метаванадатов. Напишите уравнения соответствующих реакций. Уравнения окислительно-восстановительных реакций составьте на оснований электронных уравнений,

248. Азотная кислота окисляет ванадий до метаванадиевой кислоты. Составьте электронные и молекулярное уравнения реакции.

249. Какую степень окисления проявляет ванадий в соединениях? Составьте формулы оксидов ванадия, отвечающих этим степеням окисления. Как меняются кислотно-основные свойства оксидов ванадия при переходе от низшей к высшей степени окисления. Составьте уравнения реакций: a) V2O3 с H24; б) V2O5 с NaOH.

250. При внесении цинка в подкисленный серной кислотой раствор метаванадата аммония NH4VОз желтая окраска постепенно переходят в фиолетовую за счет образования сульфата ванадия (+2). Составьте электронные и молекулярное уравнения реакции.

251. Хромит калия окисляется бромом в щелочной среде. Зеленая окраска раствора переходит в желтую. Составьте электронные и молекулярное уравнения реакции. Какие ионы обусловливают начальную и конечную окраску раствора?

252. Составьте электронные и молекулярные уравнения реакций: а) растворения молибдена в азотной кислоте; б) растворения вольфрама в щелочи в присутствии кислорода. Учтите, что молибден и вольфрам приобретают высшую степень окисления.

253. При сплавлении хромита железа Fe(CrO2)2 с карбонатом натрия в присутствии кислорода хром (+3) и железо (+2) окисляются и приобретают соответственно степени окисления (+6) и (+3). Составьте электронные и молекулярное уравнения реакции.

254. К подкисленному серной кислотой раствору дихромата калия прибавили порошок алюминия. Через некоторое время оранжевая окраска раствора перешла в зеленую. Составьте электронные и молекулярное уравнения реакции.

255. Хром получают методом алюмотермии из его оксида(III), а вольфрам восстановлением оксида вольфрама(VI) водородом. Составьте электронные и молекулярные уравнения соответствующих реакций.

256. Составьте уравнения реакций, которые надо провести для осуществления превращений: Na2Cr2O7 ® Na2CrO4 ® Na2Cr2O7 ® СгС1з. Уравнение окислительно-восстановительной реакции напишите на основании электронных уравнений.

257. Марганец азотной кислотой окисляется минимально, а рений максимально. Какие соединения при этом получаются? Составьте электронные и молекулярные уравнения соответствующих реакций.

258. Хлор окисляет манганат калия K2MnO4. Какое соединение при этом получается? Как меняется окраска раствора в результате этой реакции? Составьте электронные и молекулярное уравнения.

259. Как меняется степень окисления марганца при восстановлении КМпО4 в кислой, нейтральной и щелочной средах? Составьте электронные и молекулярное уравнения реакции между КМnО4 и KNO2 в нейтральной среде.

260. На основании электронных уравнений составьте уравнение реакции получения манганата калия K2MnO4 сплавлением оксида марганца(IV) с хлоратом калия КСlO3 в присутствии гидроксида калия. Хлорат восстанавливается максимально.

261. Почему оксид марганца (IV) может проявлять и окислительные, и восстановительные свойства? Исходя из электронных уравнений, составьте уравнения реакций: a) MnO2 + KJ + H2SO4=; б) MnO2 + KNO3 + KOH =

262. Для получения хлора в лаборатории смешивают оксид марганца(IV) с хлоридом натрия в присутствии концентрированной серной кислоты. Составьте электронные и молекулярное уравнения этой реакции.

263. Составьте уравнения реакций, которые надо провести для осуществления следующих превращений: Fe ® FeSO4 ® Fe(OH)2 ® Fe(OH)3. Уравнения окислительно-восстановительных реакций напишите на основании электронных уравнений.

264. Какую степень окисления проявляет железо в соединениях? Как можно обнаружить ионы Fe2+ и Fe3+ в растворе? Составьте молекулярные и ионно-молекулярные уравнения реакций.

265. Чем отличается взаимодействие гидроксидов кобальта(III) и никеля(III) с кислотами от взаимодействия гидроксида железа(III) с кислотами? Составьте электронные и молекулярные уравнения соответствующих реакций.

266. Могут ли в растворе существовать совместно следующие вещества:
a) FeCl3 и SnCl2; б) FeSO4 и NaOH; б) FeCI3 и K3|Fe(CN)6]? Для взаимодействующих веществ составьте уравнения реакций.

267. Составьте уравнения реакций, которые надо провести для осуществления превращений Ni ® Ni(NO3)2 ® Ni(OH)2 ® Ni(OH)3. Уравнения окислительно-восстановительных реакций напишите на основании электронных уравнений.

268. Составьте электронные и молекулярные уравнения реакции: а) растворения платины в царской водке; б) взаимодействия осмия с фтором. Платина окисляется до степени окисления (+4), а осмий – до (+8).

269. Составьте молекулярные и ионно-молекулярные уравнения реакций, которые надо провести для осуществления следующих превращений: Fe ® FeCl2 ® Fe(CN)2 ® K4[Fe(CN6].

270. Феррат калия K2FeO4 образуется при сплавлении Fe2O3 с калийной селитрой KNO3 в присутствии KOH. Составьте электронные и молекулярное уравнение реакции.

 

Элементы V группы

 

Пример 1.На основании электронных уравнений составьте уравнение реакции взаимодействия серы с азотной кислотой, учитывая, что сера окисляется максимально, а азот восстанавливается минимально.


Эта страница нарушает авторские права

allrefrs.ru - 2018 год. Все права принадлежат их авторам!