Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






ПРОБЛЕМЫ СОЗДАНИЯ ВОЛОКОННО-ОПТИЧЕСКОГО ГАЗОАНАЛИЗАТОРА ВРЕДНЫХ ВЫБРОСОВ ЭЛЕКТРОСТАНЦИЙ



Б.И. БУРЯК, А.Д. ГАЛИНСКИЙ,

Ю.Н. МАКСИМЕНКО, В.П. ПРОХОРЕНКО

(КИЕВСКОЕ НПО ВНИИАП)

Волоконно-оптический газоанализатор содержит датчик, волоконно-оптический кабель, приемо-передающий модуль и аппаратуру обработки сигналов. В процессе создания газоанализатора необходимо: обеспечить селективную газовую чувствительность датчика; повысить надежность работы и стабильность параметров во времени при измерении больших концентраций вредных выбросов электростанций; согласовать датчик и приемо-передающий модуль с волоконным трактом; усовершенствовать оптическую схему прибора путем использования различных волоконно-оптических элементов; разработать оптимальный алгоритм обработки сигналов газоанализатора.

Наиболее сложные вопросы связаны с оптической схемой прибора. Согласование спектра поглощения анализируемого газа с областью прозрачности оптических компонентов, а также спектров излучения источника и чувствительности приемника представляет серьезные трудности.

Спектры поглощения газов расположены, как правило, в ультрафиолетовой и инфракрасной областях, за пределами полосы прозрачности широко распространенных кварцевых волоконных световодов. Это несоответствие спектров является одной из главных причин, из-за которой использование в волоконно-оптическом газоанализаторе прямых методов измерений затруднено.

Селективную газовую чувствительность можно обеспечить путем использования вторичных эффектов, которые состоят в изменении температуры и давления газа при поглощении им электромагнитного излучения. В этом случае волоконно-оптический газоанализатор отличается от оптического и акустооптического лишь введением в газовую кювету волоконно-оптического микрофона или термометра. Однако такое решение не всегда является достаточно обоснованным.

Оптимальным решением, на наш взгляд, является использование датчиков, основанных на химическом взаимодействии специального реагента с газом.

Конструктивно рефрактометрический датчик был выполнен из треугольной призмы из плавленого кварца с нанесенным на ее боковые грани покрытием из газочувствительного реагента. В результате обратимой химической реакции аммиака с реагентом происходило изменение спектра поглощения, выражающееся в появлении дополнительной полосы с максимумом на длине волны 0,63 мкм, а следовательно, и аномальной дисперсии в этом диапазоне. Таким образом, луч, падающий на границу раздела подложки и реагента, претерпевал сложные преобразования, что приводило к уменьшению интенсивности отраженного луча пропорционально концентрации аммиака в газовой смеси.



Материал реагента обладал плохой адгезией к гладкой поверхности призмы. Для устранения этого недостатка первоначально на боковые грани призмы наносился слой 10-50% водной эмульсии желатина, который после высыхания пропитывался реагентом.

В качестве фотоприемника применялись или фотодиод ФД256, или фотоэлектронный умножитель ФЭУ-62. Контролировалась переменная составляющая сигнала фотоприемника с помощью осциллографа СI-70 и вольтметра переменного тока ВЗ-38.

Следует отметить, что выбор комплекта источник излучения, световод, фотоприемник неоднозначен и требует учета спектральных характеристик компонентов, мощности источника, чувствительности приемника и эффективности согласования элементов со световодами. Необходимо также учитывать электробезопасность прибора, а также его массо-габаритные показатели.

Также был исследован макет газоанализатора с использованием световодного неволоконного датчика, согласованного непосредственно с источником и приемником излучения. Преобразователь, включающий в себя датчик, а также источник и приемник излучения, конструктивно представлял собой цилиндр длиной 25 мм и диаметром 15 мм. Габаритные размеры макета газоанализатора вместе с источником питания составляли 200×85×40 мм. Чувствительность датчика, определенная экспериментально, составляла 20 мг/м3 в газовой смеси. Они должны удовлетворять требованиям обратимости, селективности и спектральной совместимости с другими оптическими элементами газоанализатора. В этом случае контролируется изменение под действием газа физических параметров реагента: температуры, массы, спектра поглощения, отражения, пропускания и т.д. Причем, волоконный световод, кроме обеспечения дистанционности измерений, может в ряде случаев быть использован и непосредственно в виде датчика: термометра, рефрактометра, акселерометра и др. Датчик может быть размещен непосредственно в зоне анализа, что существенно упрощает систему пробоподготовки.



Был изготовлен и исследован макет волоконно-оптического газоанализатора на аммиак в воздухе. Структурная схема макета состояла из источника излучения, передающего и приемного световодов с коллимирующей оптикой, газочувствительного датчика, фотоприемника и устройства регистрации.

Эксперименты проводились с двумя типами источников излучения: Не - Nе лазером ЛГ-79 (λ = 0,63 мкм) и светодиодами АЛ307Б, Г (λ = 0,66 мкм; 0,55 мкм). В качестве источника питания лазера был использован бестрансформаторный высоковольтный преобразователь, а светодиодов - генератор импульсов Г5-54.

В макете применялись как кварц/кварцевые (КК 50/125, КК 80/100), так и кварц/полимерные (КП 200, КП 400) волоконные световоды. Причем, использование того или иного типа световодов определялось энергетической эффективностью согласования и уровнем шумов.

Исследовались газочувствительные датчики абсорбционного и рефрактометрического типа. Сравнительный анализ показал преимущества последнего, что объясняется совместным влиянием эффектов поглощения, отражения и преломления на границе раздела подложки и реагента. Эксперименты по разделению, влияния на полезный сигнал датчика каждого из эффектов показали, что при использовании в качестве источника лазера вклад поглощения и отражения составляет 2%, а светодиода - 10% суммарного сигнала. А остальной вклад получался за счет эффекта преломления на границе раздела подложки и реагента. Чувствительность газоанализатора при этом определяется не толщиной слоя реагента, а траекторией распространения лучей в датчике и оптическими свойствами составляющих его компонентов. Проведенная работа позволяет сделать вывод о возможности создания портативного газоанализатора на аммиак в воздухе рабочей зоны промышленных предприятий.

Подбором газочувствительного обратимого химического реагента можно реализовать датчики и на другие газы (СО,CО2, СН4, NО, NО2, H2S), при этом структурная схема газоанализатора практически остается неизменной.


Эта страница нарушает авторские права

allrefrs.ru - 2018 год. Все права принадлежат их авторам!