Главная Обратная связь Поможем написать вашу работу!

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Трещины в сварных соединениях



Различают три вида трещин, образующихся при сварке аустенитных сталей: кристаллизационные, подсолидусные и холодные.

Первые два вида объединяют названием горячие трещины (ГТ). Повышенная склонность металла шва к ГТ обусловлена:

А. Высоким коэффициентом теплового расширения, малой теплопроводностью и высокой релаксационной стойкостью при высоких температурах. Это приводит к высокому уровню напряжений и деформаций при сварке, отпуске и эксплуатации в условиях теплосмен.

Б. Крупнокристаллической (транскристаллитной) столбчатой первичной структурой с сильно выраженной ликвационной неоднородностью по Сг, Ni, Nb, В, С и др.

В результате ликвации образуются легкоплавкие карбидные, боридные фазы в тройных стенках зерен и по траекториям срастания кристаллитов, препятствующие миграции границ зерен в более равновесные положения. При этом металл шва имеет малую пластичность в интервале ТИХ, которая может быть исчерпана в результате усадки шва и перемещения свариваемых заготовок.

Так возникает первый тип горячих трещин кристаллизационного типа, зарождающихся в остаточных пленочных выделениях жидкой фазы при Т до 1250...1200 °С.

Второй тип горячих трещин (подсолидусные) возникает в твердой фазе при 1200...1000 °С в результате межзеренного характера высокотемпературной сварочной деформации. Она стимулирует выход дислокаций и примесных атомов на границы зерен и создает ступеньки, раскрывающиеся при межзеренной деформации в результате притока вакансий и сегрегации примесных атомов в микротрещины.

Третий тип горячих трещин – ликвационные горячие трещины, образующиеся в ЗТВ по строчечным выделениям сегрегатов и примесей, а в металле шва предыдущего прохода при многослойности сварки – по ликвационным прослойкам.

Так, сульфидная эвтектика Ni3S + Ni имеет Тпл = 645 °С, а эвтектики системы Ni – Nb – Тпл = 1270 °С. Применение аустенитных сталей, подвергнутых ЭШП и хорошо очищенных от вредных примесей, позволяет избежать этих трещин.

Трещины при послесварочной термообработке жестких сварных узлов, имеющих концентраторы напряжений (непровары, подрезы, трещины и т. п.), из сталей, содержащих карбидообразующие элементы (Ti, Nb, Mo), на этапе нагрева в интервале 650...800 °С могут образоваться в результате:



– сосредоточения деформаций металла у концентраторов напряжений;

– необратимых изменений в ЗТВ (рост зерен, формирование плоских карбидов по границам) и дисперсионного твердения при термообработке.

Избежать появления трещин в сварных соединениях аустенитных сталей возможно путем:

· введения второй фазы при условии выделения ее непосредственно в процессе кристаллизации;

· дополнительного легирования некоторыми легирующими элементами;

· измельчения первичной структуры за счет легирования элементами-модификаторами;

· повышения чистоты металла по вредным примесям, способствующим образованию легкоплавких фаз;

· технологических приемов.

Вводя в металл шва вторую фазу, добиваются разрушения его транскристаллитного строения и измельчения первичной структуры. При этом общая протяженность границ между кристаллами растет и легкоплавкие эвтектики становятся разобщенными.

Вместе с этим, тормозится и перемещение несовершенств кристаллической структуры, что препятствует возникновению подсолидусных трещин.

Чаще всего второй фазой служит первичный феррит, создающий 2-х фазную аустенитно-ферритную структуру металла шва.

Наличие первичного феррита измельчает структуру металла, уменьшает концентрацию Si, Р, S и других примесей в межкристаллитных прослойках за счет большей растворимости этих элементов в феррите. Этим повышается чистота границ кристаллитов и уменьшается опасность образования легкоплавких эвтектик.



Современные исследования показали, что для придания металлу достаточной стойкости к образованию кристаллизационных трещин нужно иметь в аустенитном шве 2...5 % первичного феррита.

Если феррита больше, опасность появления горячих трещин уменьшается, но при работе такого металла в области высоких температур может происходить его охрупчивание, связанное с переходом феррита в хрупкую s–фазу, залегающую по границам зерен аустенита. При работе в агрессивных средах Т < 400 °С допускается до 25 % феррита.

Чтобы получить 2-х фазное строение в наплавленный металл вводят элементы-ферритизаторы (Cr, Mo, Si, Ti, Nb, Zr, V, A1 и др.) и уменьшают или ограничивают содержание аустенизаторов (С, Mn, N, Си, Со). Для этого используют известную диаграмму Шеффлера, т. е. вычисляют Niэ и Сгэ, и по диаграмме определяют структуру металла шва.

Если нужно сохранить чисто аустенитную структуру, то способом повышения стойкости металла шва к образованию трещин является дополнительное легирование такими элементами, как Mo, W, Nb, N. Считают, что эти элементы, имея повышенную энергию активации, снижают диффузионную подвижность атомов в аустените и подавляют возникновение зародышей подсолидусных трещин.

Измельчение структуры однофазных швов можно обеспечить и воздействием на сварочную ванну ультразвуковых или механических колебаний частотой 20...30 КГц, а также введением элементов-модификаторов (Sr, Ge, Ti, В и др.) или азота, который является сильным аустенизатором и также способствует измельчению структуры за счет увеличения центров кристаллизации в виде тугоплавких нитридов. Это повышает стойкость сварных швов против ГТ.

Повысить стойкость аустенитных швов к трещинам можно и технологическими приемами, снижающими темп нарастания внутренних деформаций, особенно в ТИХ. Большое значение приобретает при этом форма сварочной ванны, определяющая направление роста осей кристаллитов и ориентацию их границ по отношению к оси шва.

В узкой, глубокой и удлиненной сварочной ванне (большая скорость сварки) кристаллиты растут наиболее неблагоприятно – навстречу друг другу с образованием зоны сплавления в центре шва. Формируемый в этом случае шов обладает низкой технологической прочностью, так как его деформационная способность в ТИХ существенно снижается. Следует отметить, что проблема получения чисто аустенитных швов, стойких к образованию трещин, полностью пока еще не решена.

 


Просмотров 578

Эта страница нарушает авторские права




allrefrs.ru - 2021 год. Все права принадлежат их авторам!