Главная Обратная связь Поможем написать вашу работу!

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Горячие трещины в сварных соединениях



Горячие трещины (ГТ) при сварке – хрупкие межкристаллические разрушения металла шва и ЗТВ, возникающие в твердожидком состоянии при завершении кристаллизации, а также в твердом состоянии при высоких Т (рис. 20).

  Рис. 20. Характерные места расположения горячих трещин Потенциальную склонность к ГТ имеют конструкционные и легированные стали при любых видах сварки плавлением, и чаще всего они возникают в сплавах с кристаллическим строением, с повышенной локальной концентрацией легкоплавких фаз (аустенитные, ферритные и другие стали). ГТ подразделяются на кристаллизационные и подсолидусные.  
  Рис. 21. Характер изменения прочности G и пластичности П металлов и сплавов при нагреве до Тл Способность сварного соединения воспринимать без разрушения деформации, связанные с термодинамическим циклом сварки, определяет уровень его технологической прочности. Образование кристаллизационных ГТ обусловлено характером изменения прочности G и пластичности П металлов и сплавов при нагреве до Тл (рис. 21).
       

В области нагрева до Т < Тл прочность и пластичность сплавов резко падают. Пластичность остается на весьма низком уровне, а затем опять повышается. Такое изменение свойств можно объяснить, рассмотрев процесс кристаллизации металла из жидкого состояния (рис. 22).

 

Рис. 22. Схема, иллюстрирующая механизм деформирования

сплавов в жидко-твёрдом (а) и твёрдо-жидком (б) состояниях

 

Металл, нагретый до расплавления, охлаждается, и, начиная с Тп, в нем образуются зародыши твердой фазы, и, пока их мало, пластичность расплава не отличается от пластичности жидкости.

Прочность такого жидко-твёрдого расплава близка к нулю, т.е. сопротивление деформации практически отсутствует.

Начиная с Т = Твг (температура верхней границы хрупкости), металл переходит в стадию твердо-жидкого состояния, при котором возможность жидкости перетекать между затвердевшими зернами резко уменьшается.

При деформировании происходит их заклинивание и дальнейший процесс становится возможным только в случае пластической деформации самих зерен либо смещения их друг относительно друга.



Деформация такого двухфазного агрегата при условии сохранения сплошности в направлении действия сил Р возможна только при смятии отдельных точек контакта зерен (рис. 22, б, 1–2, 3–7 и т.д.), повороте прилегающих зерен и их деформации.

На ранней стадии сохраняется возможность некоторого протекания жидкости в межзеренном пространстве.

Прочность закристаллизовавшейся твердой фазы в этот период намного больше, и, если наступает разрушение, оно происходит по границам зерен, т.е. будет иметь межкристаллический характер.

С дальнейшим снижением Т возрастает объемная прочность жидкости, уменьшается ее объем, увеличивается число контактов между зернами и повышается прочность самих зерен.

При некоторой Т границы упрочняются настолько, что разрушение происходит по телу самих зерен (точка А).

Температура резкого возрастания пластичных свойств находится ниже Тс и называется нижней границей хрупкости (Тнг).

Интервал температур, заключенный между верхней и нижней границами хрупкого состояния металла, называется температурным интервалом хрупкости (ТИХ).

Если при остывании сварного соединения в пределах ТИХ интенсивность нарастания деформаций приводит к деформациям большим, чем его пластичность в данных условиях, тогда возникают ГТ.



Максимальная деформация, которая не приводит к образованию трещин, называется предельной и соответствует пластичности П шва в данных условиях.

Сопротивляемость сварного соединения образованию ГТ определяется следующими факторами (рис. 23): пластичностью металла в ТИХ, значениями ТИХ, темпом деформации сварного соединения.

Сплав 3 (рис. 23, а) трещин не дает, так как возникающий темп деформации (кривая е) недостаточен для исчерпывания его пластичности (П > е). У сплава 2 в момент, определяемый точкой А, П = е. Это критический случай. У сплава 1 в момент, характеризуемый точкой Б, произойдет исчерпывание пластичности П и образуется трещина (П < е).

  Рис. 23. Графическая иллюстрация теории технологической прочности при кристаллизации Сплавы с одинаковой пластичностью, но с большей величиной ТИХ, более склонны к образованию ГТ (рис. 23, б). Темп деформации (наклон кривой е) зависит от усадки шва и деформаций, развивающихся в околошовной зоне. Чем меньше темп деформации в ТИХ, тем меньше вероятность образования трещин (рис. 23, в). Сплав 3 трещин не образует, он имеет еще некоторый запас пластичности П. Значение ТИХ и пластичности П сварочного соединения зависит от химического состава сплава, схемы кристаллизации и степени неоднородности шва и других факторов. Необходимые условия для возникновения разрушения – межзеренная деформация или проскальзывание, возникающие как следствие воздействия термодеформационного цикла сварки.

Подсолидусные трещины образуются при температуре ниже Т затвердевания. Место их зарождения – ослабленные включениями и несовершенствами строения границы кристаллитов, где межзеренные проскальзывания наиболее выражены (участки зоны оплавления, ликвационные участки и др.).

 


Просмотров 518

Эта страница нарушает авторские права




allrefrs.ru - 2021 год. Все права принадлежат их авторам!