Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Затухающие колебания в электрическом контуре



Рассмотрим, например, электрический колебательный контур с активным сопротивлением:

В отличие от ранее рассмотренного идеального контура наличие сопротивления обеспечивает потери электромагнитной энергии в контуре, что ведет к затуханию колебаний. Закон Ома для контура 1-L-R-2 запишется следующим образом (обозначения те же, что и ранее):

Сделав в этом уравнении те же подстановки, получим:

или

где и

Решением канонического дифференциального уравнения затухающих колебаний величины x является:

В этом уравнении: - амплитуда затухающих колебаний; j0 - начальная амплитуда; - циклическая частота затухающих колебаний (слово "циклическая" будем для краткости обычно опускать, когда и так ясно, о какой частоте идет речь). Период затухающих колебаний T = 2p/w.

Затухающие колебания формально не попадают под определение периодических колебаний, - каждое последующее колебание не в точности повторяет предыдущее (см. график). Поэтому - опять же формально - нельзя пользоваться понятиями, введенными для периодических колебаний (частота, период). Чтобы обойти эту логическую неувязку, w и T определяют как условную частоту и условный период, а затем про "условные" слова тут же забывают.

График

посмотреть колебания волны на осциллографе

Частота затухающих колебаний, разумеется, не может быть отрицательной, поэтому формулы для x и w справедливы при b < w0. Если же мы имеем случай b > w0, или b = w0, что означает большое трение в системе, то колебаний не происходит; система, будучи выведенной из равновесия, возвращается к равновесному состоянию без колебаний. Такое движение называется апериодическим (то есть не периодическим, см. график, на котором показаны возможные апериодические движения а и б).

 

N12

Колебательный контур — осциллятор, представляющий собой электрическую цепь, содержащую соединённые катушку индуктивности и конденсатор. В такой цепи могут возбуждатьсяколебания тока (и напряжения).

Колебательный контур — простейшая система, в которой могут происходить свободные электромагнитные колебания



Резонансная частота контура определяется так называемой формулой Томсона:

 

Пусть конденсатор ёмкостью C заряжен до напряжения . Энергия, запасённая в конденсаторе составляет

При соединении конденсатора с катушкой индуктивности, в цепи потечёт ток , что вызовет в катушке электродвижущую силу (ЭДС) самоиндукции, направленную на уменьшение тока в цепи. Ток, вызванный этой ЭДС (при отсутствии потерь в индуктивности) в начальный момент будет равен току разряда конденсатора, то есть результирующий ток будет равен нулю. Магнитная энергия катушки в этот (начальный) момент равна нулю.

Затем результирующий ток в цепи будет возрастать, а энергия из конденсатора будет переходить в катушку до полного разряда конденсатора. В этот момент электрическая энергия конденсатора . Магнитная же энергия, сосредоточенная в катушке, напротив, максимальна и равна

, где — индуктивность катушки, — максимальное значение тока.

После этого начнётся перезарядка конденсатора, то есть заряд конденсатора напряжением другой полярности. Перезарядка будет проходить до тех пор, пока магнитная энергия катушки не перейдёт в электрическую энергию конденсатора. Конденсатор, в этом случае, снова будет заряжен до напряжения .

В результате в цепи возникают колебания, длительность которых будет обратно пропорциональна потерям энергии в контуре.



В общем, описанные выше процессы в параллельном колебательном контуре называются резонанс токов, что означает, что через индуктивность иёмкость протекают токи, больше тока проходящего через весь контур, причем эти токи больше в определённое число раз, которое называетсядобротностью. Эти большие токи не покидают пределов контура, так как они противофазны и сами себя компенсируют. Стоит также заметить, что сопротивление параллельного колебательного контура на резонансной частоте стремится к бесконечности (в отличие от последовательного колебательного контура, сопротивление которого на резонансной частоте стремится к нулю), а это делает его незаменимым фильтром.

Стоит заметить, что помимо простого колебательного контура, есть ещё колебательные контуры первого, второго и третьего рода, что учитывают потери и имеют другие особенности.

 

N13

Магни́тный пото́к — поток как интеграл вектора магнитной индукции через конечную поверхность . Определяется через интеграл по поверхности

при этом векторный элемент площади поверхности определяется как

где — единичный вектор, нормальный к поверхности.

Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади:

где α — угол между вектором магнитной индукции и нормалью к плоскости площади.

Магнитный поток через контур также можно выразить через циркуляцию векторного потенциала магнитного поля по этому контуру:

Рассмотрим контур с током, образованный неподвижными проводами и скользящей по ним подвижной перемычкой длиной l (рис. 2.17). Этот контур находится во внешнем однородном магнитном поле , перпендикулярном к плоскости контура. При показанном на рисунке направлении тока I, вектор сонаправлен с .

Рис. 2.17

На элемент тока I (подвижный провод) длиной l действует сила Ампера, направленная вправо:

Пусть проводник l переместится параллельно самому себе на расстояние dx. При этом совершится работа:

Итак,

  , (2.9.1)  

Работа, совершаемая проводником с током при перемещении, численно равна произведению тока на магнитный поток, пересечённый этим проводником.

Формула остаётся справедливой, если проводник любой формы движется под любым углом к линиям вектора магнитной индукции.

Выведем выражение для работы по перемещению замкнутого контура с током в магнитном поле.

Рассмотрим прямоугольный контур с током 1-2-3-4-1 (рис. 2.18). Магнитное поле направлено от нас перпендикулярно плоскости контура. Магнитный поток , пронизывающий контур, направлен по нормали к контуру, поэтому .

Рис. 2.18

Переместим этот контур параллельно самому себе в новое положение 1'-2'-3'-4'-1'. Магнитное поле в общем случае может быть неоднородным и новый контур будет пронизан магнитным потоком .

Площадка 4-3-2'-1'-4, расположенная между старым и новым контуром, пронизывается потоком .

Полная работа по перемещению контура в магнитном поле равна алгебраической сумме работ, совершаемых при перемещении каждой из четырех сторон контура:

где , равны нулю, т.к. эти стороны не пересекают магнитного потока, при своём перемещение (очерчивают нулевую площадку).

.

Провод 1–2 перерезает поток ( ), но движется против сил действия магнитного поля.

.

Тогда общая работа по перемещению контура

или

  , (2.9.2)  

здесь – это изменение магнитного потока, сцепленного с контуром.

Работа, совершаемая при перемещении замкнутого контура с током в магнитном поле, равна произведению величины тока на изменение магнитного потока, сцепленного с этим контуром.

Элементарную работу по бесконечно малому перемещению контура в магнитном поле можно найти по формуле

N14


Просмотров 1080

Эта страница нарушает авторские права

allrefrs.ru - 2020 год. Все права принадлежат их авторам!