Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






РАСЧЕТ И УСТРОЙСТВО ТЕПЛОАККУМУЛЯТОРА СОЛНЕЧНОГО КОЛЛЕКТОРА. СОЛНЕЧНЫЙ ОБОГРЕВ ДОМА



ВОЗДУШНЫЙ ТЕПЛОАККУМУЛЯТОР

 

Из нескольких теплоаккумулирующих сред для теплоаккумуляторов воздушного типа наиболее известными и употребимыми являются камни. Хотя применение этого материала кажется сравнительно дешевым и легким решением, однако, это не всегда так. Наиболее существенным преимуществом камней является их низкая стоимость (если камней действительно много).

В зависимости от конструкции и размеров отсека для камней могут потребоваться камни размером до 100 мм. На 1 м2 коллектора требуется 35...180 кг камней из-за их малой теплоемкости. Огромное количество камней усложняет проблему их транспортировки и перегрузки, а также требует отсека, достаточного по размеру, чтобы вместить их. При 30% пустот объем камней, необходимый для аккумулирования того же количества тепла, что и бак с водой, должен быть в 2,5 раза больше.

Большая периметральная площадь этих отсеков-аккумуляторов влечет за собой более высокие строительные расходы и большие потери тепла. Потенциальная возможность более значительных потерь тепла из больших отсеков с камнями по сравнению с меньшими по размеру водяными баками, тем не менее, компенсируется сравнительно медленным естественным движением тепла через камни в отличие от постоянного движения воды внутри большого бака при изменении температуры (например, из-за потери тепла).

Одним из серьезных ограничений в использовании камней является недостаточность их универсальности как рабочих тел для других целей помимо аккумулирования тепла, они, например, не могут служить теплоносителем для подогрева воды, охлаждения и даже отопления жилого помещения. Один из немногих и наиболее распространенных способов приготовления горячей воды в этом случае заключается в установке небольшого (0,1...0,4 м3) неизолированного водяного бака между камнями. Теплообмен протекает медленно, но продолжается круглые сутки.

Методы солнечного охлаждения применимы тогда, когда камни удерживают прохладу для дальнейшего использования. Эту прохладу можно получить путем:



- циркуляции холодного ночного воздуха;

- воздуха, охлажденного ночной радиацией;

- воздуха, охлажденного внепиковыми холодильными компрессорами.

Воздушные теплоаккумулирующие системы ограничивают способ передачи тепла окружающему пространству.

На рис. 1 показан купольный дом, в котором отсек с камнями расположен в пределах помещения. Передача тепла из отсека в помещение происходит медленно путем естественной конвекции из комнаты в нижнюю часть отсека и оттуда через верх, а при необходимости, при помощи небольших вспомогательных вентиляторов (куполообразная форма была выбрана заказчиком, а отдельно стоящий коллектор указывает на ограничения, накладываемые строительным участком).

 

Рис. 1. Воздушные коллекторы (расположенные отдельно) и

теплоаккумулятор с твердой засыпкой в купольном доме:

A - панели коллектора;

B - контейнер теплоаккумулятора с кирпичным или каменным щебнем;

C - подземный изолированный канал для подачи воздуха.

 

Местоположение теплового аккумулятора с камнями может явиться серьезным ограничением в их использовании. Если теплоаккумулятор размещается в подвале здания, то расходы на сооружение отсека необязательно должны быть включены в общую стоимость системы солнечного теплоснабжения. Однако, если под тепловой аккумулятор отводится подвал, предназначенный для других целей, или жилое помещение, то стоимость сооружения такого отсека добавляется к стоимости системы. На рис. 2 показано использование контейнера-аккумулятора с засыпкой из камней в качестве архитектурного элемента здания. В данном доме этот способ применен довольно удачно. Однако из-за большого веса контейнеров или отсеков для камней под ними должны предусматриваться прочные фундаменты.



 


Рис. 2. Засыпка, содержащаяся в вертикальном цилиндре

Рис. 3. Разрез солнечного дома


 

На рис. 3 представлен разрез дома. Площадка для дома представляет собой крутой северный склон холма с высокими зданиями к югу. Коллектор устанавливается как можно выше, чтобы не попасть в тень от соседних зданий. Вследствие своих больших размеров и массы теплоаккумулирующий отсек с камнями находится на нижнем этаже здания.

 

На рис. 4, где показана схема солнечной системы, теплый воздух из коллектора поступает в верхнюю часть отсека. Он затягивается внутрь, выходит снизу и поступает обратно в коллектор. Для обогрева дома прохладный воздух поступает в нижнюю часть отсека и нагревается по мере подъема между камнями. Самые теплые камни наверху нагревают воздух до наибольшей степени. На рисунке также показан цикл отопления на жидком топливе, в котором комнатный воздух обходит отсек с камнями. Обычно, аккумуляторный отсек не должен нагреваться отопителем, за исключением случаев, когда он располагается внутри жилого помещения.

Рис. 4. Схема системы солнечного теплоснабжения:

A - режим поглощения солнечной энергии;

B - режим отопления помещения;

C - режим дублирующего отопления;

D – режим приготовления горячей воды.

 

В режиме А воздух поступает через дно коллектора и выходит через верх. Нагретый воздух подается вниз, проходя через тепловой аккумулятор с камнями и нагревая его, и возвращается обратно в коллектор.

В режиме Ввоздух засасывается из жилого помещения и поступает в нижнюю часть теплоаккумулятора. При прохождении через камни он нагревается и поступает обратно в жилое помещение.

В режиме Сотопитель, работающий на жидком топливе, нагревает воздух, поступающий из жилого помещения через приточную камеру в нижней части теплового аккумулятора. Нагретый воздух поступает в жилое помещение через верхнюю камеру теплоаккумулятора.

В режиме Dбак для приготовления горячей воды находится внутри теплоаккумулирующей среды, которая играет роль или нагревателя, или подогревателя в зависимости от уровня температуры теплоаккумулятора.

Одна из важных причин того, что теплый воздух подается из коллектора в верхнюю часть отсека, заключается в стремлении обеспечить температурную стратификацию. Это дает возможность нагревать комнатный воздух до наивысшей возможной температуры при помощи самых теплых камней, находящихся в верхней части отсека. Если теплый воздух будет поступать через низ отсека, даже без перемещения внутри него, то тепло из нижней части распределится равномерно по всему отсеку, что вызовет в нем общее понижение температуры. Подача комнатного воздуха в то же место, что и теплого воздуха из коллектора, будет способствовать этому выравниванию тепла по отсеку, а не нагреву воздуха в целях отопления здания.

Форма отсека теплового аккумулятора имеет особое значение при использовании камней в качестве теплоаккумулирующей среды. Вообще, чем больше расстояние, которое воздуху требуется пройти через камни, тем больше должен быть размер камней для уменьшения перепада давления и снижения необходимой мощности вентилятора. Например, если отсек представляет собой высокий цилиндр (см. рис. 2), то требуются камни большего размера. Если высота цилиндра более 2,5 м, то размер камней должен быть по крайней мере 50 мм; для более высоких цилиндров размер камней должен быть еще больше. Для приземистых, горизонтальных отсеков, которые обычно устанавливаются в подвалах, может подойти гравий диаметром 25...50 мм (рис. 5).

 

 

Рис. 5. Форма отсека теплового аккумулятора:

а - вертикальный отсек: 1 - теплый воздух из коллектора;

2 - размер камней в поперечнике 50...100 мм;

3 - холодный воздух к коллектору;

б - горизонтальный отсек: 1 - теплый воздух из коллектора;

2 - холодный воздух к коллектору;

4 - гравий в поперечнике 25...50 мм;

5 - теплый воздух к дому; 6 холодный воздух из дома.

 

Предлагаемые выше размеры в большей степени зависят от скорости проходящего через камни воздуха. Чем меньше скорость воздуха, тем мельче должны быть камни и тем толще их слой. По сути дела, увеличение перепада давления проходящего через камни воздушного потока прямо пропорционально увеличению скорости воздуха. Разумеется, чем меньше камни в поперечнике, тем больше суммарная площадь поверхности камней, которая получает тепло от воздуха. Вообще, камни или булыжники должны быть достаточно большими, чтобы поддерживать низкий перепад давления при достаточно хорошем теплообмене.

 

В теплоаккумулирующих системах воздушного типа можно также использовать небольшие контейнеры для воды, которые можно разместить на стеллажах, полках или каким-либо другим способом, чтобы дать воздуху возможность беспрепятственно обтекать их. Такими контейнерами могут являться пластмассовые, стеклянные, алюминиевые емкости, бутыли, банки. Проблема укладки или размещения контейнеров решается разными путями, но, пожалуй, наиболее успешным является установка их на поддоны с последующим продуванием воздуха по горизонтали между поддонами (рис. 6).

Рис. 6. Отсек теплового аккумулятора для воздушных систем,

в которых применяются небольшие контейнеры с водой:

1 - поступление воздушного потока; 2 - контейнеры с водой; 3 - полки;

4 - выход воздушного потока; 5 - отсек аккумулятора.

 

Можно разместить небольшие контейнеры между балками перекрытий (пустоты здесь выступают в качестве воздушных коробов) или использовать вертикальные пустоты теплоаккумулятора, служащие перегородками между помещениями или элементами наружнымх стен. И опять, при размещении теплоаккумулятора внутри отапливаемого помещения все потери тепла из него поступают в здание. На рис. 7 показан разрез дома, спроектированного таким образом, что воздух, циркулируя в замкнутом контуре, проходит вверх через вертикальный, обращенный на юг коллектор, а затем опускается вниз через вертикальный объем, заполненный небольшими контейнерами с водой.

Рис. 7. Вертикальные воздушные коллекторы и

водяной теплоаккумулятор контейнерного типа:

1 - отсек; 2 - коллектор.

 

Стену такой конструкции нелегко приспособить для камней, и в этом заключается одно из главных преимуществ контейнеров с водой. Другое преимущество в том, что для воды требуется меньший объем пространства, для аккумуляции того же количества тепла, что и камни. Утечка воды вряд ли вызовет проблемы, поскольку в одном месте протечки потеря воды составит не более нескольких литров.

ЖИДКОСТНОЙ ТЕПЛОАККУМУЛЯТОР

 

Существенным преимуществом жидкостных теплоаккумулирующих систем, содержащих бак-аккумулятор с водой, является их совместимость с солнечным охлаждением. Воду можно использовать для всех видов солнечного охлаждения, в том числе и для:

· ночного радиационного охлаждения;

· внепикового охлаждения при помощи небольших компрессоров;

· циклов Ренкина;

· абсорбционного охлаждения.

Наибольшим преимуществом воды в качестве теплоаккумулирующей среды является ее сравнительно низкая стоимость (за исключением тех районов мира, где воды мало). Однако с водой связаны некоторые трудности, решение которых может вызвать значительные затраты.

В настоящее время удерживание больших объемов воды (100...350 м3 на 1 м2 коллектора) стало проще благодаря появлению надежных гидроизоляционных материалов и больших пластиковых листов. Раньше единственным сосудом был бак из оцинкованной стали, который, в конечном счете, протекал. Замена крупных баков, размещенных обычно в подвалах или под землей, является трудным и дорогостоящим делом. Внедрение стеклофутеровки и баков из стекловолокна устранило проблемы коррозии, но увеличило первоначальные затраты.

На рис. 8 показаны два способа хранения воды:

· наполненный водой бетонный (или шлакоблочный) контейнер;

· система Г. Томасона (бак с водой, окруженный камнями).

В 1-ом способе теплая вода из бака циркулирует в здание либо непосредственно через радиаторы или теплоизлучающие панели, либо косвенно через змеевиковые теплообменники, которые нагревают обтекающий их воздух, охлажденный в помещении.

Во 2-ом способе теплоаккумуляторпередает тепло медленно, но постоянно от бака с водой камням. Охлажденный в доме воздух медленно циркулирует в больших объемах между нагретыми камнями и возвращается обратно в дом. В обоих случаях самая холодная вода на дне бака поступает в коллектор для подогрева, а затем возвращается в верхнюю часть бака. Эта нагретая в коллекторе вода используется для отопления дома.

 

Рис. 8. Две теплоаккумулирующих системы водяного типа.

(Слева - бетонный резервуар, наполненный водой; справа - водяной бак, окруженный камнями):

1 - к коллектору; 2 - гидроизоляционная облицовка; 3 - к радиатору;

4 - из коллектора; 5 - стенка из бетонных или шлакобетонных блоков;

6 - от радиаторов; 7 - вода; 8 - камни размером 70...100 мм с воздушными промежутками;

9 - выпуск теплого воздуха; 10 - впуск холодного воздуха; 11 - бак с водой.

 

На рис. 9 показано поперечное сечение дома. Система солнечного теплоснабжения имеет в своем составе коллектор с открытым стоком воды. Теплообменник отбирает тепло от теплового аккумулятора и передает его в дом через большие стеновые и потолочные радиационные панели, позволяя использовать воду сравнительно низкой температуры. Второй теплообменник подогревает воду для хозяйственных нужд, которая затем поступает в обычный водонагреватель для догрева (при необходимости).

Большие размеры и высокая стоимость теплообменников могут вызвать серьезные возражения против использования водяных баков-аккумуляторов. 25...50 т камней в системе Томасона, хотя и будучи дополнительным тепловым аккумулятором, являются в некотором смысле чересчур внушительным теплообменником. У некоторых типичных металлических теплообменников, погруженных в воду, общая площадь поверхности теплообмена может составлять чуть ли не 1/3 от площади солнечного коллектора.

 


Рис. 2. Коллекторы с наружным стоком воды и бак-аккумулятор в доме:

1 - коллекторы; 2 - теплообменники для радиационного отопления горячей водой;

3 - теплоаккумулятор.

 

Теплообменники необходимы, когда воду в баке невозможно использовать непосредственно для других целей, кроме аккумуляции тепла. Например, при использовании в коллекторе раствора антифриза он должен проходить через теплообменник во избежание смешивания его с водой в баке. Кроме того, при расчете теплоснабжения здания инженеры по отоплению обычно требуют, чтобы вода из бака не использовалась в отопительной системе. Это особенно показательно для случая, когда вода из бака циркулирует через коллектор.

Ограничение выбора местоположения для больших баков с водой может оказаться выгодным для проектировщиков здания, не желающих ломать голову над вопросом об оптимальном месте их размещения. Однако, для проектировщика, желающего сделать теплоаккумулятор неотъемлемой частью своего проекта, размещение тяжелого и громоздкого бака может оказаться действительно очень трудной задачей. Естественно, в самосливных системах жидкостного типа тепловой аккумулятор должен находиться ниже дна коллектора, а в термосифонных системах — выше верхней части коллектора. Если теплоаккумуляционная система связана с другим оборудованием, например с отопителем, насосами, теплообменником и бытовыми водонагревателями, то может потребоваться ее близкое размещение к ним.


РАСЧЕТ И УСТРОЙСТВО ТЕПЛОАККУМУЛЯТОРА СОЛНЕЧНОГО КОЛЛЕКТОРА. СОЛНЕЧНЫЙ ОБОГРЕВ ДОМА.

 

Теплоаккумулятор призван накопить излишнее тепло, выработанное солнечным коллектором, и равномерно распределить его в течении суток или даже нескольких дней. Делать солнечный коллектор без какого либо теплового аккумулятора нет большого смысла (разве что в расчете на тепловую инерционность дома). Но по логике, следует делать такой комплекс из теплового аккумулятора и солнечного коллектора, который бы обеспечивал бы дом теплом хотя бы одну ночь (после солнечного дня или хотя бы нескольких солнечных часов). А лучше - в течении нескольких дней после хотя бы одного солнечного дня.

Вместе с тем, не стоит наивно надеяться только на солнечный обогрев в условиях продолжительного пасмурного периода, короткого светового дня и маленького угла наклона Солнца, так как солнечный обогрев в этот период осуществить весьма проблематично. Поэтому солнечный обогрев следует воспринимать как способ экономии расходов на отопление, а не полную альтернативу традиционному отоплению.

Теплоаккумулятор должен представлять из себя достаточно теплоемкое устройство, способное быстро аккумулировать тепловую энергию, достаточно долго его хранить и отдавать по требованию. Его теплоемкость должна соответствовать как мощности солнечного коллектора, так задачам, стоящим перед теплоаккумулятором. Вообще говоря, на Руси пользовались теплоаккумулятором издревле. Всем известна т.н. «русская печь». Это несколько тонн кирпича и достаточно большая камера для горения дров. Будучи интенсивно протоплена в течении нескольких часов, такая печь хранила тепло несколько суток! Чем вам не теплоаккумулятор?

Конструкция теплоаккумулятора определяется физикой процесса. Из солнечного коллектора поступает воздух с температурой 40-60 градусов. Этим воздухом обдувается рабочее тело теплоаккумулятора. Оно нагревается и когда надо, через него начинают продувать воздух, который затем направляют на обогрев помещений.

Давайте рассчитаем, сколько тепла сможет выработать солнечный коллектор (его условный квадратный метр) и какой теплоаккумулятор должен ему соответствовать. Допустим, солнечный коллектор эффективно освещается солнцем 6 часов. За это время на него падает примерно 5 КВт тепловой энергии. Это эквивалентно 18 МДж. Посмотрим, как нам лучше запасти эту энергию (КПД мы пока не учитываем).

В подавляющем большинстве случаев авторы всевозможных проектов рекомендуют использовать каменно-гравийные теплоаккумуляторы. Это достаточно разумно. Материал вечный, никаким воздействиям не подвержен. Ничего не боится. Но теплоемкость камня = 0,8 Кдж/кг*град. Что бы запасти всю энергию солнечного коллектора, нам потребуется примерно 750 кг камней (при условии, что исходная температура камней была 20 градусов.)

750 кг. это не много, где-то 0,3-0,4 кубометра. Но запасенного тепла нам хватит на отопление всего 2-х квадратных метров площади (из расчета 100 ватт/метр) .

5000 Ватт / 24 часа / 100 ватт = 2,08 метра. (и это без учета КПД и всевозможных потерь).

А что бы запасти тепла на сутки для дома в 100 кв. метров, нам потребуется соответственно в 50 раз больший солнечный коллектор и в 50 раз больший теплоаккумулятор. Т.е. солнечный коллектор в 50 кв. метров и аккумулятор на 37,5 тонн! (Реально - тонн 50). Такой теплоаккумулятор будет занимать объем уже в 20-25 кубометров. И это всего лишь ради отопления на 1 сутки!

Если солнечная погода стоит несколько дней подряд, можно было бы запасти тепла по больше, но второй закон термодинамики гласит, тепло не передается от более холодного тела к более теплому в обычных условиях. Т.е. как только теплоаккумулятор нагреется до температуры обдувающего его воздуха, он перестанет поглощать и накапливать тепло. Сделать теплоаккумулятор более теплоемким можно либо дальнейшим его наращиванием по объему, либо применением более теплоемких материалов.

Самым теплоемким (и бесплатным) материалом является вода. Ее теплоемкость ~ 4.2 Кж/кг*град. Это в 5,25 раз больше, чем у камня. Т.е. для того условного метра солнечного коллектора нам потребуется не 750 кг камня, а примерно 150 литров воды. (для суточного аккумулятора и 50 метрового солнечного коллектора соответственно ок. 7,5 тонн воды. ).

Но если организовать теплообмен между воздухом и камнями проще простого (проложил воздуховод и завалил его камнями, воздух будет проходить в щели между камнями и обмениваться с ним теплом). То сделать теплообменник вода / воздух гораздо сложнее. Однако тут есть весьма интересное и остроумное решение - создать искусственные камни с теплоемкостью воды! Как? Да разлить воду по пластиковым ПЭТ бутылкам и канистрам! Многочисленные зазоры между ними будут тем самым теплообменником вода/воздух.

Конечно, бутылок и канистр потребуется весьма много для нескольких десятков тонн воды, но зато не потребуется делать никакого теплообменника.

Разумеется, человек, задумавший устроить у себя солнечное отопление из коллектора и теплоаккумулятора, скорее всего будет исходить не из того, что надо или хочется, а из того, что он может себе позволить сделать. Если есть крыша определенного размера, из которой можно сделать солнечный коллектор, то вряд ли он будет делать солнечный коллектор специально (большего размера или в стороне от дома). То же и с теплоаккумулятором. Это ведь не бочка с водой для садового душа. Тут счет идет на кубометры. И устроить теплоаккумулятор с бухты – барахты вряд ли удастся. Место для него надо заранее резервировать на стадии проектирования дома.

Итак, допустим, согласно проекта под теплоаккумулятор выделяется примерно 60-65 кубометров подвала. Тут можно будет разместить около 50 тонн воды (в канистрах по 10-20 литров и т.п.) В теплооборот будут так же включены примерно 30 куб. метров бетона (ок. 50 тонн) составляющих стены подвала теплоаккумулятора (их планируется утеплить с другой стороны для уменьшения теплопотерь аккумулятора).

Таким образом, максимальная теплоемкость такого теплоаккумулятора (для перепада температур в 40 градусов) составит 50.000 кг * 4,2 КДж * 40 + 50.000 кг * 0,8 КДж * 40 = 10.000 Мдж (10 ГДж). Это эквивалентно сжиганию примерно 600-1000 кг отборных дров (1,5-2 кубометра). Больше этого количества тепла невозможно запасти даже теоретически. Если учесть что для отопления потребуется порядка 100 ватт/час/кв.м , (0,36 Мдж), то этим теплом можно обогреть 27000 кв.м/час. (т.е. либо 100 кв.метров в течении 270 часов, либо 200 кв. метров в течении 135 часов, либо 25 метров в течении 1000 часов и т.д.). Разумеется это зависит от конструкции дома и организации теплоаккумулятора и системы воздушного отопления.

Теперь рассчитаем, за какое время наш солнечный коллектор сможет нагреть этот теплоаккумулятор. Солнечный коллектор теоретически может иметь площадь до 100 кв. метров. Допустим, с каждого метра сможем снимать по 500 Ватт энергии в час. (это примерно 1,8 МДж/час. Соответственно со всего коллектора 180 Мдж/час. Что бы зарядить весь теплоаккумулятор «по самую крышку» соответственно потребуется 10000 / 180 = 55-60 солнечных часов. В реальности - гораздо больше, т.к. у теплоаккумулятора есть и теплопотери. Возможно, в реальности он никогда и не зарядится на полную силу.

Получить 60 солнечных часов подряд, как понимаете, совершенно невозможно. Максимальное время, в течении которого солнечный коллектор – крыша будет работать – это 5-6 часов в лучшем случае. Крыша ориентирована на юг и утром и вечером ждать от нее эффективной работы не стоит. Но за 5-6 часов она способна выдать около 1000 МДж тепла (т.е. зарядить теплоаккумулятор на 1/10 его емкости).

Напрашивается вывод: Необходимо разделить теплоаккумулятор на несколько «банок» - отделов. Тогда можно будет управлять им по значительно более гибкому алгоритму. Если солнечный день - случайность, и их всего 1-2, то в течении его и зарядить 1-2 «банки» (например 20%) аккумулятора. Зато практически полностью. Если же установилась хорошая погода надолго, то последовательно заряжать все остальные банки теплоаккумулятора. Так же следует и расходовать тепловую энергию, по очереди «разряжая» отделы аккумулятора.

Для такой организации «банки» должны быть серьезно теплоизолированы друг от друга, но иметь возможность объединятся. Гибкая система управления позволит наиболее полно использовать потенциал солнечного отопления.

Другой вывод, который можно сделать из вышеприведенных расчетов: При правильной организации солнечного коллектора и теплоаккумуляторы 1 условный квадратный метр солнечного коллектора за один свой «рабочий час» (когда он освещен солнцем) вырабатывает тепловую энергию в количестве достаточном для отопления с коэффициентом 5-8 . (Для условной величины расходов на отопление 100 Ватт/кв.метр). Чем лучше утеплен дом, более качественно устроен тепловой коллектор, теплоаккумулятор и коммуникации, тем выше будет этот коэффициент.

Можно даже вывести простую формулу некого теплового баланса.

Кк * Sск * Тсолн. = Sот * Тоб, где

Кк - коэффициент конверсии тепла, 5…8 (не более 8 принципиально при КПД 100%)

Sск - площадь солнечного коллектора (кв.м)

Тсолн - время эффективного освещения коллектора солнцем. (часы)

Soт - обогреваемая площадь помещения. КВ м.

Тоб - время обогрева помещения (час.)

Исходя из своих возможностей или потребностей и располагая определенными исходными данными, можно рассчитать все остальные параметры солнечного обогрева.

Например, у вас есть возможность сделать солнечный коллектор площадью 10 кв. м, который будет освещен в течении 5 часов. Получим 5..6*10*5=250…300. Соответственно, мы сможем отапливать 25 кв.м. в течении 10-12 часов. Или 10 кв. м в течении суток.

Очевидно, что имея небольшой солнечный коллектор, нет смысла закладываться на отопление всего дома. Лучше качественно обогревать одно помещение . Это уже даст существенное экономию топлива или электроэнергии.

 


Просмотров 2868

Эта страница нарушает авторские права

allrefrs.ru - 2020 год. Все права принадлежат их авторам!