Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Концепция личностного знания



Неявное знание и его особая роль в биологии

 

М. Полани (1891–1976), английский философ и историк науки, в первый период своей научной деятельности успешно работавший в области физико-химии, уже в предисловии своей книги "Личностное знание" (опубликована впервые в 1958 г., русский перевод 1985 г.), ясно заявляет о своей позиции: "Я отказался от идеала научной беспристрастности. В точных науках этот ложный идеал, пожалуй, не приносит большого вреда, поскольку ученые им нередко пренебрегают. Но в биологии, психологии и социологии его влияние оказывается разрушительным, искажающим все наше мировоззрение даже за пределами собственно науки" (М. Полани 1986, с. 18). Стержень концепции М. Полани — существование двух типов знания — явного, вербализуемого, выражаемого в словах и знаках, и неявного знания, скрытого, подразумеваемого или имплицитного.

Целостные свойства сложной системы не могут быть познаны лишь изучением отдельных элементов. Постижение целостных свойств невозможно без интуиции, субъективного отношения к объекту познания. Многими фактами из истории науки М. Полани обосновывает тезис, что в каждом акте познания присутствует страстный вклад познающей личности. Это не добавка, а необходимый элемент знания об объекте. Неявное знание не вербализуется, а существует как предчувствие, предсознание, в форме персональных символов или образов. Эти неявные личностные элементы осознаются не сами по себе, а лишь посредством их вклада в постижение целого. Неявное знание не осознается даже самим исследователем, экспертом. Иными словами, не только два пишем – три в уме, а зачастую просто не осознаем или не ведаем сколько "в уме". Знание систематики о морфологии вида и различиях между близкими видами, знание топографии тела, которым обладает хирург, или оценка сложной позиции шахматным мастером — все это относится к невербализуемому, подсознательному знанию.

Специалисты могут сформулировать некоторые общие принципы своей работы и указать на ключевые моменты своей практической деятельности, но "знают они все же гораздо больше, чем могут выразить в словах, они знают эти принципы и признаки практически, не эксплицитно, не как объекты, а в качестве инструментов, неразрывно связанных, с их интеллектуальными усилиями, направленными на постижение той ситуации, с которой сталкиваются. И в этом своем качестве периферическое знание невыразимо в словах" (Полани, 1985, с. 130).



Справедливость концепции личностного знания подтвердилась в работах по использованию ЭВМ в качестве средства представления знаний, которые привели к рождению новой научной дисциплины — когнитологии. Когнитология исследует способы выявления, вербализации, представления в виде логических символов знаний от эксперта–профессионала. Здесь-то и выяснилось, что эксперт, знания которого хотят заложить в машину, не знает сам не только границ своего знания, но и не всегда в состоянии по своей воле вызвать любой фрагмент своего знания и поставить его под контроль сознания. "От эксперта нельзя требовать и соотнесения своего знания с общепринятыми мнениями других экспертов, нельзя требовать обоснования его собственных суждений" (Шрейдер, 1986). Задача когнитолога — особыми приемами приблизиться к неявному знанию, слитому с личностью эксперта.

Концептуальные открытия

 

Интеллектуальное превосходство человека над животными состоит прежде всего в возможности языкового представления, мыслительного процесса, а, во-вторых, в оперировании знаками, символами. "Символическая, словесная презентация открывает возможность оперировать символами и понятиями и резко расширяет интеллектуальные возможности человека. Почему же мы позволяем нашим понятиям направлять весь ход и течение наших мыслей? Потому что верим, что присущая им рациональность является залогом того, что они соприкасаются с реальностью, схватывают какие-то ее аспекты", — делает вывод М. Полани (Ibid., с. 153).

М. Полани вводит важное для истории науки понятие "концептуальное открытие". Оно представляет собой удачный способ выразить неявное знание или неявно принимаемое допущение в ясной, доступной для других знаковой форме. Например, в истории химии такое концептуальное открытие было сделано итальянским химиком Станислао Канницаро (1826–1910), предложившим четко разграничить понятия "атом", "молекула", "эквивалент". На 1-м Международном конгрессе химиков в Карлсруэ (1860 г.) он убедил химиков стать на позиции атомно-молекулярного учения, внеся ясность в запутанный вопрос о различии атомных, молекулярных и эквивалентных весов. Сегодня так же трудно представить, почему химики столь долго пользовались неточными понятиями, как решив задачу-головоломку, снова стать перед ней в тупик, — пишет М. Полани.



В истории генетики очень велика была роль концептуальных открытий, к которым следует отнести введение новых терминов, понятий, способов представления данных, символики, а также собственно концептуальных конструктов и открытий. Уже Г. Г. Мендель ввел буквенную символику для обозначения разных факторов и обозначения фенотипически контрастных и отличающихся по характеру доминантности–рецессивности состояний одного и того же наследственного фактора. Это дало возможность представить в ясной форме характер наследования признаков в ряду поколений, установить количественные закономерности расщепления и анализировать его сложные случаи. Удивительна судьба понятия "ген". Оно было предложено В. Иогансеном в 1909 г., три года спустя после введения У. Бэтсоном термина "генетика". За сорок лет до появления понятия "ген" Ч. Дарвин в 1868 году предложил "временную гипотезу" пангенеза, согласно которой все клетки организма отделяют от себя особые частицы или геммулы, а из них, в свою очередь, образуются половые клетки. Затем Гуго де Фриз в 1889 г., спустя 20 лет после Ч. Дарвина, выдвинул свою гипотезу внутриклеточного пангенеза и ввел термин "панген" для обозначения имеющихся в клетках материальных частиц, которые отвечают за вполне конкретные отдельные наследственные свойства, характерные для данного вида. Геммулы Ч. Дарвина представляли ткани и органы, пангены де Фриза соответствовали наследственным признакам внутри вида.

Еще через .20 лет датский физиолог и генетик растений Вильгельм Иогансен счел "удобным пользоваться только второй частью термина де Фриза "ген" и заменить им неопределенное понятие "зачатка", "детерминанта", "наследственного фактора" (Иогансен, 1933, с. 122). При этом он решительно подчеркивал, что "этот термин совершенно не связан ни с какими гипотезами и имеет преимущество вследствие своей краткости и легкости, с которой его можно комбинировать с другими обозначениями". В. Иогансен сразу же образовал ключевое производное понятие "генотип" для обозначения наследственной конституции гамет и зигот в противоположность фенотипу. Термин "ген" получил распространение в значительной степени именно вследствие своих чисто знаковых, символических преимуществ. Он был использован и амплифицирован Т. Морганом, будучи "материализован" в его хромосомной теории наследственности как локус хромосомы.

Сам В. Иогансен до конца жизни вполне скептически относился к жесткой связи генов как элементарных единиц генотипа с локусами хромосом (этот скепсис оказался оправданным в перспективе). С некоторым смущением в июле 1926 г. он пишет в предисловии к третьему немецкому изданию, что "мое маленькое словечко "ген" в его отчетливом значении, по-видимому, пользуется теперь всеобщим признанием; и после того, как Т. Морган его вновь ввел в употребление, я его применяю в этих лекциях везде там, где оно уместнее, чем имеющее несколько смыслов слово "фактор" (Иогансен, 1933). Удачным оказалось и другая терминологическая новация В. Иогансена: он удалил окончание "морф" от термина В. Бэтсона "аллеломорф" и стал говорить просто об аллельных генах или аллелях.

В 1995 году американский генетик Эдвард Льюис получил Нобелевскую премию за исследование гомеозисных генов, которые определяют характер сегментации тела (план строения) у беспозвоночных и позвоночных животных. В кратком очерке истории проблемы он отдает дань В. Бэтсону, обладавшему удивительным чувством языка и способностью к удачной терминологизации и символизации явлений в области наследственности и изменчивости (Lewis, 1994). Наряду с номинацией самой науки генетики, В. Бэтсон изобрел термины гомо- и гетерозигота. И он же предложил термины "меристические признаки" и "гомеозис". В 1929 г. Е. И. Балкашина опубликовала на немецком языке исследование по феногенетике открытой ею мутации aristopedia у дрозофилы. Она пришла к выводу, что гомеозис может быть двух разных типов и обозначила каждый из них немецким термином. Но это важное подразделение вместе с терминологией осталось незамеченным, и Э. Льюис выражает сожаление, что В. Бэтсону не удалось дожить до этого открытия: уж он бы изобрел удачные англоязычные термины для открытия Е. И. Балкашиной и тем самым в определенной мере определил бы направление исследований (Lewis, 1994).

Таким образом, при историко-научном анализе целесообразно выделять два типа открытий или достижений: 1) прямым образом основанных на экспериментальных данных и 2) открытий концептуальных, элементарным актом которых является введение новой символики, терминологии, понятия. Приведу некоторые примеры из истории генетики.

Рождение популяционной генетики датируется появлением в 1926 г. статьи С. С. Четверикова. В этой статье была развита целая серия концептуальных представлений, которые затем вскоре были замечательным образом экспериментально подтверждены. К таковым относятся представления о "мутационном давлении", о насыщении каждого вида гетерозиготными рецессивными мутациями, вследствии постоянно идущего мутационного процесса, о постоянно меняющейся "генотипической среде", на фоне которой происходит реализация каждого гена. Концептуальные открытия С. С. Четверикова на десятилетия определили направление экспериментальных работ в этой области. (Бабков, 1986; Воронцов Н., Голубовский, 1990).

Историко-научный подход позволил выделить и другие концептуальные открытия, сделанные в области популяционной и эволюционной генетики учениками и последователями С. С. Четверикова (Golubovsky, Kaidanov, 1994). К таковым можно отнести: концепцию генофонда и геногеографии, концепцию дрейфа генов или генетико-автоматических процессов. В сферу важных концептуальных нововведений входит формулирование принципов генетического анализа и системы терминов, необходимых для описания фенотипической реализации генотипа (пенетрантность, экспрессивность, специфичность, поле действия гена, генетическая конституция), концептуальная разработка цитогенетических методов контроля численности популяций насекомых-вредителей.

Замечательным примером чисто концептуального открытия является формулировка Г. Меллером в 40-х годах концепции "компенсации дозы гена". Г. Меллер исходил из хорошо известных к тому времени фактов важности дозы гена для его действия и проявления в системе генотипа. Однако до Меллера никто ясно не формулировал мысль, что организмы, у которых система определения пола основана на различии в числе половых хромосом, должны выработать определенный точный механизм компенсации дозы генов, локализованных в половых хромосомах. Например, женские особи у мух-дрозофил и у человека имеют конституцию XX, а мужские особи — XY. Y-хромосома на 90% генетически инертна и, стало быть, дефицит дозы генов Х-хромосомы у самцов должен быть каким-то образом сбалансирован. Сформулированный Меллером концептуальный принцип на десятилетия определил экспериментальные поиски механизмов компенсации дозы у разных видов.

Оказалось, что в эволюции осуществляются разные сценарии. Так, у человека одна из двух Х-хромосом в ходе онтогенеза инактивируется, причем неактивна в разных тканях и органах то одна, то другая из двух Х-хромосом. Поэтому женские особи у млекопитающих в отношении действия генов Х-хромосом мозаичны. У дрозофил повышена вдвое активность каждого гена в Х-хромосоме самцов по сравнению с самками. А плоские черви выбрали другой сценарий — понизили в два раза активность дозы генов Х-хромосом у самок. Этот пример, между прочим, иллюстрирует нередкий в эволюции живых организмов принцип: единство целого при свободе частей (Любищев, 1982).

 


Эта страница нарушает авторские права

allrefrs.ru - 2019 год. Все права принадлежат их авторам!