Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Параллельно соединенные элементы



В цепи синусоидального тока

Необходимо определить токи цепи, представленной на рис. 2.17 и состоящей из двух параллельных ветвей, в одной из которых находится индуктивный элемент, а в другой - емкостной. К цепи подведено синусоидальное напряжение:

 

u = Um sin (wt +yu).

Первый закон Кирхгофа для мгновенных значений токов: i, i1 и i2 имеет вид:   i = i1 + i2, а в случае представления этого закона в комплексной форме:

Рис. 2.17

Величины токов и определяются законом Ома:

где Z1 = R2 + jXL, Z2 = R2 - jXC.

Тогда:

где Y = Y1 + Y2 – эквивалентная проводимость цепи.

При параллельном соединении ветвей эквивалентная комплексная проводимость равна сумме комплексных проводимостей ветвей. Это правило справедливо для любого числа параллельно включенных ветвей.

Вектор тока можно представить как сумму активной и реактивной его составляющих:

С другой стороны, согласно закона Ома:

где g и в – активная и реактивная компоненты проводимости Y. Следовательно:

Анализ фазовых соотношений между током i и напряжением U проводится с использованием векторных диаграмм рис. 2.18.

Рис. 2.18

Напряжение является общим для обеих параллельных ветвей. Ток 1 первой ветви, содержащей индуктивный элемент, отстает по фазе от напряжения на угол j1. Ток 2 второй ветви, содержащей емкостной элемент, опережает по фазе напряжение на угол j2. Поэтому для суммарного тока составляющие определяются как:

 

Рассматриваются три случая:

Вектор тока отстает от вектора напряжения на угол j. Следовательно, цепь носит активно-индуктивный характер.

Вектор тока опережает вектор напряжения на угол j. Следовательно, цепь носит активно-емкостной характер.

Между векторами тока и напряжения нет сдвига по фазе (j = 0). Следовательно, цепь носит только активный характер. Такой режим цепи называется резонансом тока.

С учетом того, что реактивной одной из ветвей определяется индуктивным элементом, а реактивность другой – емкостным, вводятся обозначения реактивной проводимости каждой ветви: в1= в2, вr = вC. Тогда условие резонанса токов можно записать как:

 

вL= вC.

Это условие можно выразить через сопротивления элементов в ветвях. Поскольку реактивная составляющая проводимости

 

Таким образом, условие резонанса токов определяется не только реактивными, но и активными составляющими ветвей.



Необходимо иметь в виду, что при параллельном соединении ветвей цепи синусоидального тока ток неразветвленного участка может быть существенно меньше токов в ветвях после разветвления. Такая возможность объясняется тем, что в этих ветвях реактивные составляющие токов находятся в противофазе.

Пример. Определить показания амперметров в неразветвленном участке цепи и в ветви с индуктивным элементом, если в ветви с емкостным элементом амперметр показывает действующее значение тока 10 А. Величины сопротивлений элементов цепи, представленной на рис. 2.19, следующие: XC = 10 Ом, XL = 10 Ом, R = 5 Ом.

Действующее значение напряжения, подводимого к цепи:

U = XCIC = 10×10 = 100 В.

 

Рис. 2.19

Действующее значение тока в ветви с индуктивным элементом:

Активная составляющая этого тока:

Реактивная составляющая этого тока:

Рис. 2.20

 

Активная и реактивная составляющие токов приведены на векторной диаграмме рис. 2.20. Ток в ветви с емкостным элементом имеет только реактивную составляющую. Ее величина равна 10 А. Поэтому реактивная составляющая тока неразветвленного участка:

Ip = I1p – I2p = 8 – 10 =-2 A.

Активная составляющая тока в неразветвленном участке равна активной составляющей тока ветви с индуктивным элементом.

 

Iа = I1а.

Следовательно, действующее значение тока в неразветвленном участке:

 

 


Эта страница нарушает авторские права

allrefrs.ru - 2019 год. Все права принадлежат их авторам!