Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Сумма квадратов значений фактической ошибки модели должна быть минимальной



Иными словами, найденные с помощью МНК оценки a0, a1,..., an, обеспечивают минимум следующей квадратичной формы на множестве всех других комбинаций значений таких оценок:

 

 

где et – значение фактической ошибки модели в момент t=1,2,..., Т, полученное после подстановки в выражение (1.2) вместо неизвестных истинных значений параметров a0, a1,..., an их оценок a0, a1,..., an.

Оптимальные по данному критерию значения оценок в этом случае могут быть найдены путем решения следующей системы так называемых “нормальных” уравнений, вытекающей из условия равенства нулю частных производных функции s2(a0, a1,..., an) по своим параметрам в точке минимума:

 

 

 

В системе (2.3) неизвестными являются оценки параметров a0, a1,..., an, а ее известные коэффициенты сформированы на основе исходных данных и представлены в виде следующих сумм: i,j=1,2,..., п. Решения, получаемые на основе развернутой формы системы (2.3), достаточно громоздки, и поэтому в дальнейшем в математических выкладках общего характера будем использовать векторно-матричную форму представления ее составляющих.

Векторно-матричная форма записи линейной эконометрической модели (1.2) имеет следующий вид:

у=Х×a+e, (2.4)

 

где у – вектор-столбец, состоящий из Т компонент; Х – матрица размера Т´(п+1) (если в модели присутствует “свободный” коэффициент a0); a=(a0, a1,..., an)¢– вектор-столбец параметров, состоящий из п+1-й компоненты; e – вектор-стобец ошибки модели, состоящий, как и вектор у, из Т компонент.

Соответственно векторно-матричный вариант модели, в котором вместо неизвестных истинных коэффициентов a и ошибок e используются их оценки, т. е. вектора а и е, запишем в следующем виде:

у=Х×а+е, (2.5)

 

где а=(а0, а1,..., аn)¢, е=(е1, е2,..., еТ)¢– вектора значений оценок коэффициентов линейной эконометрической модели и значений ее фактической ошибки соответственно.

Сумму квадратов значений ошибки s2 можем представить в виде скалярного произведения вектора-строки е¢на вектор-столбец е. Проводя несложные преобразования с учетом правил произведения векторов и матриц, получим следующий результат:

s2 =(е¢, е)=(уХ×a)¢(уХ×a)= у¢уa¢Х¢уу¢Хa+a¢Х¢Хa=

=у¢у–2a¢Х¢у+a¢Х¢Хa. (2.6)

 

При проведении преобразований учитывалось правило транспонирования векторно-матричного произведения (z×W)¢=(W¢×z¢).



Условие (2.3) в векторной форме записи приобретает следующий вид:

 

s2a=0. (2.7)

 

Заметим, что в выражении (2.7) операция дифференцирования осуществляется по вектору.

С учетом выражения (2.6) уравнение (2.7) приводится к следующему виду:

 

s2a=¶(у¢у–2a¢Х¢у+a¢Х¢Хa)/¶a=–2Х¢у+2Х¢Хa=0

или

Х¢Хa=Х¢у.

 

Откуда следует, что “оптимальный” вектор оценок параметров a определяется на основе следующего векторно-матричного выражения:

a=(Х¢Х)–1×Х¢у. (2.8)

 

Все переменные в правой части выражения (2.8) являются известными – это исходные данные, сведенные в матрицу Х и вектор у.

Свойства оценок МНК

Рассмотрим основные условия, при которых оценки коэффициентов линейной эконометрической модели, во-первых, могут быть в принципе найдены, а, во-вторых, их “качество” будет “достаточно высоким”, что является определенным свидетельством и достаточного качества построенной модели.

Как было отмечено в разделе 1.5, “качество” оценок, их свойства тесно связаны со “статистической” трактовкой исходных данных и, в первую очередь, независимых переменных. Рассмотрим сначала случай, когда измеренные (наблюдаемые) значения независимых факторов трактуются как детерминированные (неслучайные) величины.


Эта страница нарушает авторские права

allrefrs.ru - 2019 год. Все права принадлежат их авторам!