Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Назначение, способы и особенности закалки 4 часть



где С – постоянная, зависящая от природы газа и поглоти­теля; q – дифференциальная теплота растворения газа; R – газовая постоянная.

Таким образом, растворимость газа в жидкости увеличивается с повышением давления и снижением температуры.

Закон Генри можно представить иначе:

,

где концентрация абсорбтива в реакторе, равновесная с газовой фазой, в которой концентрация абсорбтива равна РА.

Когда в равновесии с жидкостью находится смесь газов, закон Генри справедлив_для каждого из компонентов смеси в отдельности.

Поскольку скорость абсорбции ограничена, а время контакта газа и жидкости не может быть бесконечно большим, то конечная концентрация абсорбтива в газе всегда будет больше равновесной и степень разделения при абсорбции всегда меньше 1 (100%). Минимальный расход поглотителя (абсорбента) определится из материального баланса процесса абсорбции:

,

где G – расход инертного газа; уK, уH – начальная и конечная кон­центрации абсорбтива в газовой фазе соответственно; – конечная равновесная концентрация абсорбтива; хНначальная концентра­ция абсорбтива в жидкой фазе. Рабочий расход абсорбента будет всегда выше минимального, по­скольку хk >> , то обычно Lmin/L = 0,5... 0,8.

Количество поглощаемого абсорбента можно определить по одному из уравнений:

;

,

где ky, kxкоэффициенты массопередачи; F – поверхность контакта фаз; , – средняя логарифмическая разность концентраций по газовой и жидкой фазе соответственно.

Абсорбция осуществляется в аппаратах, называемых абсорберами. В зависимости от способа контактирования газа и жидкости различают абсорберы: насадочные, тарельчатые, полые, поверхностные и др. При проектировании абсорбционной установки необходимо определить ско­рость газового потока, состав газа, общее давление процесса и потери давления в абсорбере, минимальную степень извлечения абсорбируемых веществ и тип абсорбента. Насадочные абсорберы эффективны при диаметрах менее 0,6м и относительно большом отношении – .

Тарельчатые абсорберы предпочтительнее применять при высокой производительности и относительно малых расходах абсорбента. Ско­рость газового потока в абсорбере составляет 50–75 % от скорости захлебывания, при которой становится невозможным стекание жидкос­ти. Потери давления в абсорбере, минимальная степень извлечения абсорбируемых веществ и тип абсорбента определяются по экономи­ческим соображениям.

Типичная технологическая схема абсорбции представлена на рис. 45.



 

 

Рис. 45. Типичная технологическая схема адсорбции

 

Предварительно охлажденный после плазмохимического реактора газ подается в нижнюю часть абсорбера 1.Поднимаясь по колонне снизу вверх, он контактирует со стекающим навстречу абсорбентом, который поглощает из газовой смеси абсорбат. Очищенный газ уходит из верхней части абсорбера, а насы­щенный абсорбент подогревается в теплооб­меннике 3 и подается в верхнюю часть десорбера 4. Выделившийся при десорбции абсорбтив удаляется из верхней части десорбера, а регенерированный абсорбент из нижней части десорбера возвращается в теплообменник 3, где охлаждается, отдавая теплоту насыщенному абсорбенту. После окончательного охлаждения в холо­дильнике 2 абсорбент поступает на орошение в верхнюю часть абсор­бера. Для компенсации тепловых потерь при десорбции в схеме пре­дусмотрен дополнительный подогрев части абсорбента в нагревателе 6. При необходимости абсорбтив охлаждают в холодильнике 5.

Адсорбция.При поглощении адсорбтива твердыми веществами (адсорбентами) достигается полное разделение газовых компонентов (Э – 1). Адсорбция, так же, как и абсорбция, обратима. Поэтому при десорбции возможно выделение поглощенных веществ из адсорбента. В качестве адсорбентов применяют вещества с большой удельной по­верхностью: силикагели, цеолиты, активные угли.

Процесс проводят в адсорберах периодического или непрерывного действия. В последнем случае часть адсорбента должна непрерывно выводиться из аппарата на регенерацию. Это связано с разрушением адсорбента и уносом образующейся пыли. Непрерывность процесса можно также обеспечить, установив в схеме два адсорбера периодиче­ского действия, в то время как один работает, другой находится на реге­нерации. Схема адсорбера периодического действия с неподвижным слоем адсорбента представлена на рис. 46.



Процесс адсорбции проходит в четыре стадии. Первая стадия – адсорбция. Газовая смесь подается в корпус 1 аппарата через патрубок 4, проходит через слой адсорбента 2 на решетке 7 и выходит через патрубок 8. Вторая стадия – десорб­ция. Подача газовой смеси прекращается, в аппарат через барботер 10 подается водяной пар. Смесь десорбированного компонента и водяного пара удаляется через патрубок 3. Конденсат отводится через патрубок 9. Третья стадия – сушка адсорбента. Перекрываются вход и выход водяного пара, после чего адсорбент сушится горячим воздухом, по­ступающим в аппарат через патрубок 4 и выходящим через патрубок 8. Четвертая стадия – охлаждение адсорбента. Прекращается подача горячего воздуха, после чего адсорбент охлаждается холодным возду­хом, поступающим в аппарат через патрубок 4 и выходящим через патрубок 8. Патрубки 5 и 6 служат соответственно для загрузки и выгрузки адсорбента.

 

Рис. 46. Схема адсорбера периодического действия

 

Разделение системы газ – газ в адсорбционной установке (рис. 47) производится следующим образом.

 

 

Рис. 47. Схема адсорбционой установки

В процессе адсорбции из газовой смеси в адсорбере 3 поглощается адсорбтив. Для десорбции адсорбтив вместе с водяным паром подается в конденсатор 4. В сепараторе 5 конденсат отделяется. Сушка адсорбента производится воздухом, подаваемым вентилятором 1 через калорифер 2. Для охлаждения ад­сорбента воздух подается по отводной линии, минуя калорифер. Для обеспечения непрерывной работы установки в схеме должно быть пре­дусмотрено не менее двух адсорберов, включаемых поочередно и ра­ботающих со сдвигом стадий.

Количество вещества, поглощаемого в результате адсорбции, равно:

М = 0,9l0Sy0,

где l0 – высота работающего слоя адсорбента; S – площадь попереч­ного сечения слоя адсорбента; у0концентрация адсорбтива в газо­вой смеси, поступающей на адсорбцию:

l0 = Utпр,

где tпр – время защитного действия слоя, которое принимают, исходя из графика работы производства; U – скорость движения фронта ад­сорбции

 

,

где kyUобъемный коэффициент массопередачи;

,

 

здесь у и у* – текущая и равновесная концентрации адсорбтива соответственно;

 

где Vcобъемный расход газовой смеси, поступающий на адсорбцию; ω0 – фиктивная скорость газовой смеси (ω0£0,3м/с).

 

3.3. Мероприятия по защите окружающей среды

При плазмохимической переработке сырья возможно образование продуктов, представляющих угрозу для окружающей среды. Это ток­сичные газы, жидкие отходы, пыль. Наиболее вредными являются соединения азота: NO, NO2, N2O6, образующиеся, например, при пере­работке нитратов, либо в результате окисления азота кислородом в воздушной плазме; соединения серы – SO2 и SO3, которые сопутст­вуют переработке сульфатов. При переработке углеводородов в азот­ной плазме образуются весьма токсичные продукты: СО, HCN и C2N2. В результате конденсации паров, выходящих из плазмохимического реактора, могут образоваться серная азотная и фосфорная кислоты а также вредные сточные воды. Для плазмохимических процессов характерно получение твердых продуктов в виде ультрадисперсных порошков, многие из которых являются токсичными. При неполном их улавливании они могут проникать в окружающую среду. Предель­но допустимые концентрации некоторых вредных веществ представ­лены в таблице 7.

Таблица 7.

Предель­но допустимые концентрации некоторых вредных веществ

Вещество Предельно допустимая концентрация, мг/л
Оксиды азота (в пересчете на N2O5) 0,005
Оксид углерода (II) 0,02
Серная кислота и серный ангидрид 0,001
Сернистый газ 0,01
Фосфор желтый 0,00003
Фосфин 0,0001
Фтороводород 0,0005
Хлор 0,0005
Хлороводород и соляная кислота 0,005
Циановодород 0,0003

 

Радикальным средством борьбы с загрязнением окружающей среды является создание и внедрение безотходных технологий. Иногда этого можно достичь удачным выбором сырья и плазмы. Например, в ре­зультате переработки карбонатов в плазме водяного пара в качестве побочных продуктов образуются только СО2 и Н2О, которые не токсичны и могут быть повторно исполь­зованы. Другая возможность соз­дания безотходных технологий заключается в организации ре­циклов газовой и жидкой фаз. Например, при переработке нит­ратов в воздушной плазме обра­зуются токсичные оксиды азота, часть которых при конденсации водяного пара переходит в азот­ную кислоту. Загрязнение окру­жающей среды в значительной сте­пени можно предотвратить, если отходящие газы направить в плазмотрон, а азотную кислоту использовать для растворения иссходных солей и на закалку (рис. 48).

 

 

Рис. 48. Схема с рециклом газовой и жидкой фаз:

1 – реактор для растворения исходных солей, 2 – насос, 3 – плазмохимический реактор, 4 – закалочное устройство, 5 – фильтр, 6 – конденсатор,7 – компрессор

 

Азотная кислота может после доупаривания полностью выводить­ся из цикла в качестве товарного продукта. Основная часть оксидов азо­та будет выводиться из цикла с азотной кислотой. Остальные будут возвращаться в плазмохимический реактор с отработавшими газами. И только малая часть в соответствии с материальным балансом процес­са будет выводиться с газовой фазой.

В зависимости от количества отходов и их физико-химических свойств применяются разные методы очистки: механические, сорбционные, химические, термические, биологические, а также комбинирован­ные.

Механическимметодом очищают газообразные и жидкие отходы от дисперсных примесей под действием гравитационных, инерционных, электростатических сил или сил давления. Применяемые для этого аппараты (осадители, циклоны, фильтры, электрофильтры) описаны выше.

Сорбционныйметод применяют для очистки газообразной или жид­кой фаз от вредных примесей путем их избирательного поглощения жидкими или твердыми поглотителями. При десорбции поглощенные компоненты выделяются в концентрированном виде и обезвреживают­ся другими методами, например, термическим или химическим.

При химическом методе очистки в систему вводят реагенты, всту­пающие во взаимодействие с примесями, в результате чего образуются новые соединения, не оказывающие токсического действия на окружа­ющую среду. Этот метод целесообразно применять для очистки сточ­ных вод, содержащих примеси в концентрациях не более 1–2 г/л и газов, содержащих не более 100 мг/л токсичных веществ.

Термическийи биологическийметоды применяют для очистки газо­образных и жидких продуктов от органических примесей, образование которых не характерно для плазмохимических процессов. Однако термический метод можно применять также для очистки газообразных продуктов от неорганических веществ. Например, при сжигании смеси оксидов азота с аммиаком происходит восстановление их до азота.

Физико-химические основы и аппаратурное оформление очистки газообразных и жидких продуктов от токсичных примесей подробно описаны в специальной литературе.

 

Вопросы для самоконтроля:

 

1. Перечислите способы разделения продуктов плазмохимических реакций.

2. Назовите основные способы разделения системы «газ – твердое вещество».

3. Что такое степень очистки?

4. Что такое эффективность улавливания дисперсной твердой фазы?

5. Каким способом может быть повышена эффективность улавливания дисперсной твердой фазы?

6. В каких случаях оправдано применение гравитационных уловителей?

7. Назовите достоинства и недостатки гравитационных уловителей?

8. В каких случаях оправдано применение циклонов?

9. Назовите достоинства и недостатки циклонов?

10. В каких случаях оправдано применение фильтрующих материалов?

11. Назовите достоинства и недостатки гибких фильтрующих материалов?

12. Назовите достоинства и недостатки жестких фильтрующих материалов?

13. Назовите фильтрующие материалы, пригодные для работы при температуре выше 1000 K.

14. В каких случаях оправдано применение электрофильтров?

15. Назовите достоинства и недостатки электрофильтров?

16. Назовите основные способы разделения системы «газ – газ».

17. Какие системы разделяют при помощи процесса абсорбции?

18. Какие системы разделяют при помощи процесса адсорбции?

19. Какие вы знаете адсорбенты?

20. Назовите возможные источники загрязнения окружающей среды в плазмохимических процессах.

 

 

4. ПЛАЗМОХИМИЧЕСКИЕ ТЕХНОЛОГИИ

 


Эта страница нарушает авторские права

allrefrs.ru - 2019 год. Все права принадлежат их авторам!