Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Постановка задач і методи розв’язування



Постановка задач стохастичного програмування має певну специфіку. Насамперед слід ураховувати такі застереження:

1. Важливо, яким є вектор Х — детермінованим чи випадковим. Якщо вектор Х є детермінованим, то він не залежить від випадкових параметрів моделі. Якщо він випадковий, то залежить від випадкових параметрів.

2. Істотним є те, як розуміти максимізацію (мінімізацію) цільової функції — як абсолютну (для всіх значень ) чи як максимізацію її математичного сподівання або деякої іншої ймовірнісної характеристики цієї функції (моди, медіани) або мінімізації середньоквадратичного відхилення. Тут — простір подій . Наприклад, що краще: мати платню 500±200 чи 450±50. У першому випадку платня становить 300—700, у другому — 400—500 грн.

3. Слід з’ясувати, як виконуються обмеження — абсолютно для всіх чи в середньому або з допустимими порушеннями, ймовірність яких мала.

У постановці задач стохастичного програмування слід брати до уваги не лише математичні закономірності, а й економічний зміст та евристичні міркування.

Детермінованість чи стохастичність вектора Х визначається сутністю економічних, технологічних процесів тощо. Наприклад, площі посіву сільськогосподарських культур є детермінованими, обсяги кредитів — стохастичними величинами, бо напевне не відомо, чи вони будуть отримані.

У стохастичному програмуванні важливим є вибір цільової функції, яка визначає ефективність функціонування й розвитку економічної системи. Цільовою функцією можна взяти:

1) максимізацію математичного сподівання відповідного економічного показника (прибутку, рентабельності тощо);

2) мінімізацію дисперсії економічних показників;

3) лінійну комбінацію математичного сподівання та дисперсії економічних показників;

4) імовірність перевищення (неперевищення) економічним показником певного фіксованого порогу;

5) максимізація математичного сподівання функції корисності.

У стохастичному програмуванні підвищується важливість багатокритеріальної оптимізації.

Обмеження у стохастичних економіко-математичних моделях можуть задаватися різними способами, а отже, відповідні оптимальні плани матимуть різний рівень гарантії їх виконання. При цьому потрібно брати до уваги як внутрішню невизначеність (технологічні процеси), так і невизначеність зовнішнього середовища (постачання сировини, попит на вироблену продукцію, податки тощо).

Нехай задано обмеження в загальному вигляді



. (6.28)

Неможливо, а іноді й недоцільно вимагати, щоб знайдений розв’язок задовольняв обмеження (6. 28) за будь-яких реалізацій випадкових параметрів . З огляду на це можна накласти дещо менш жорсткі обмеження, зокрема замість (6.28) припустити невиконання умов з певною ймовірністю

(6.29)

або

. (6.30)

Обмеження (6.29) розуміємо так: імовірність того, що не перевищує значення . Відповідно вираз (6.30) гарантує, що з імовірністю виконуватиметься обмеження (6.28). Наприклад, якщо , то обмеження (6.28) у 95 випадках зі 100 виконуватиметься і тільки в п’яти не виконуватиметься.

Аналогічно модифікують й цільову функцію. Нехай — функція, яка виражає ефективність плану при заданих х та . Тоді задачу визначення оптимального детермінованого плану х при випадкових параметрах можна сформулювати в таких варіантах:

1) (6.31)

за умов

(6.32)

; (6.33)

 

2) (6.34)

за умов

(6.35)

. (6.36)

Отже, при постановці задачі варіанта 1 необхідно максимізувати середню сподівану ефективність за умов, що обмеження, наприклад за ресурсами, виконанням контрактів тощо, виконаються з імовірністю . При постановці задачі варіанта 2 додатково вимагається, щоб значення функції ефективності наприклад прибутку, було не меншим за з імовірністю , а значення було максимальним.

Зауважимо, що варіант 1 простіший у обчислювальному аспекті.

Постановка задачі стохастичного програмування істотно залежить від того, чи є можливість під час вибору (прийняття) рішень уточнювати стан економічного середовища (природи) на підставі певних спостережень. Для економічних систем розробляють стратегічні і тактичні плани. У стратегічних планах ураховують усі можливі значення , тобто стан зовнішнього та внутрішнього середовища, а рішення приймають щодо траєкторії розвитку системи. Проте в певний момент часу в результаті спостереження стан економічного середовища стає відомим. Тоді розробляють тактичний план, тобто знаходять рішення (розв’язок) при заданому , розв’язуючи задачу:



max

за умов

,

.

У загальному випадку спостереження не повністю визначають стан економічного середовища, а тому етапи вибору рішень (розв’язків) можуть чергуватися з етапами спостережень за станом зовнішнього середовища. Отже, відбуваються багатоетапні процеси вибору рішень у такій послідовності:

рішення — спостереження — рішення — спостереження...

Послідовність рішень називають N-етапною, якщо в ній слово «рішення» зустрічається N разів.

Отже, процес прийняття рішень розвитку та функціонування економічної системи складається з програмної (стратегічний план) і адаптивної (тактичний план) частин. Можливість плану адаптуватися до постійної зміни умов його реалізації — необхідна умова ефективного розвитку та функціонування економічних систем.

Програмну (стратегічну) та адаптивну (тактичну) частини плану поєднують згідно з такими принципами:

1) план-програму обирають так, щоб максимізувати сподівану корисність з урахуванням майбутньої адаптації до кожної ситуації;

2) план-адаптація має бути найефективнішим для кожної реалізації економічної ситуації зі збереженням стратегії розвитку системи;

3) план-програму (стратегію) можна коригувати з урахуванням можливих майбутніх ситуацій зовнішнього і внутрішнього середовищ.

Плани, здобуті згідно з моделями (6.31)—(6.33) або (6.34)—(6.36), називають М-планами, тобто як критерій оптимальності використовується максимізація математичного сподівання . Проте часто доцільно розглядати дисперсію цієї функції або моменти вищих порядків. Якщо критерій оптимальності має вигляд , то здобуті плани називають D-планами.

Іноді доцільно за критерій оптимальності брати різницю

,

де К — відомий параметр.

Можливі й інші варіанти побудови критерію оптимізації.

Методи розв’язування стохастичних задач поділяють на дві групи — прямі та непрямі.

Прямі методи застосовуються для розв’язування задач стохастичного програмування, коли існують способи побудови функцій і , на базі інформації щодо параметра . У непрямих методах стохастичну задачу намагаються звести до задачі лінійного чи нелінійного програмування, тобто розглядається детермінований аналог задачі стохастичного програмування.


Эта страница нарушает авторские права

allrefrs.ru - 2019 год. Все права принадлежат их авторам!