Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Спектр сигналов с угловой модуляцией



 

Будем изучать модулированные радиосигналы, которые получаются за счёт того, что в несущем гармоническом колебании передаваемое сообщение изменяет либо частоту , либо начальную фазу ; амплитуда остаётся неизменной. Поскольку аргумент гармонического колебания , называемый полной фазой, определяет текущее значение фазового угла, такие сигналы получили название сигналов с угловой модуляцией.

Однотональные сигналы с угловой модуляцией. Анализ ФМ- и ЧМ-сигналов с математической точки зрения гораздо сложнее, чем исследование АМ-колебаний. Поэтому мы будем рассматривать простейшие однотональные сигналы.

В случае однотонального ЧМ-сигнала мгновенная частота:

,

где - девиация частоты сигнала.

Полная фаза такого сигнала

,

где – некоторый постоянный фазовый угол.

Величина

(2.39)

называется индексом однотональной угловой модуляции.

Для краткости положим, что неизменные во времени фазовые углы , и выразим мгновенное значение ЧМ-сигнала в виде:

(2.40)

Аналитическая форма записи однотонального ФМ-сигнала будет аналогичной. Однако нужно иметь в виду следующее: ЧМ- и ФМ-сигналы ведут себя по-разному при изменении частоты модуляции и амплитуды модулирующего сигнала, кроме того при ФМ , а при ЧМ

Спектральное разложение ЧМ- и ФМ-сигналов при малых индексах модуляции. Задачу о представлении сигналов с угловой модуляцией посредством суммы гармонических колебаний несложно решить в случае, когда . Для этого преобразуем формулу (2.40) следующим образом:

 

(2.42)

Таким образом, показано, что при в спектре сигнала с угловой модуляцией, содержатся несущие колебания и две боковые составляющие (верхняя и нижняя) на частотах . Индекс m играет здесь такую же роль как коэффициент М при АМ. Однако можно обнаружить и существенное различие спектров АМ-сигнала и колебания с угловой модуляцией.

 

 

Спектральная диаграмма сигнала с угловой модуляцией при .

 

Для спектральной диаграммы, построенной по формуле (2.42) характерно то, что нижнее боковое колебание имеет дополнительный фазовый сдвиг на 180 градусов. При значениях m=0.5-1 появляется вторая пара гармонических колебаний с боковыми частотами , затем третья пара и так далее. Возникновение новых спектральных составляющих приводит к перераспределению энергии по спектру.

С ростом m амплитуда боковых составляющих увеличивается, в то время как амплитуда несущего колебания уменьшается.



Спектр сигнала с угловой модуляцией при произвольном значении индекса m. Для простейшего случая однотонального ЧМ- и ФМ-сигнала можно найти общее выражение спектра, справедливое при любом значении индекса модуляции m.

Математическая модель ЧМ- или ФМ-сигнала с любым значением индекса модуляции:

(2.43)

(m) – функция Бесселя k- того порядка от аргумента m.

Спектр однотонального сигнала с угловой модуляцией в общем случае содержит бесконечное число составляющих, частоты которых равны ; амплитуды этих составляющих пропорциональные значениям .

В теории функций Бесселя доказывается, что функции с положительными и отрицательными индексами связаны между собой соотношением:

Поэтому начальные фазы боковых колебаний с частотами совпадают, если k- чётное число, и отличаются на 180 градусов, если k- нечётное. С ростом индекса модуляции расширяется полоса частот, занимаемая сигналом. Обычно полагают, что допустимо пренебречь всеми спектральными составляющими с номерами . Отсюда следует оценка практической ширины спектра сигнала с угловой модуляцией.

 

(2.44)

 

Как правило, реальные ЧМ- и ФМ-сигналы характеризуются условием . В этом случае

(2.45)

Таким образом, сигнал с угловой модуляцией занимает полосу частот, приблизительно равную удвоенной девиации частоты.

Для передачи АМ-сигнала требуется полоса частот, равная , то есть в m раз меньшая. Большая широкополосность ЧМ- и ФМ-сигналов обуславливает их гораздо более высокую помехоустойчивость по сравнению с АМ-сигналами.

 

Спектральные диаграммы сигнала с угловой модуляцией при двух значениях индекса m (амплитуды представлены в относительном масштабе).

 

 

Аналитический сигнал. Основные понятия и определения. Спектр аналитического сигнала



Анализируя формулу обратного преобразования Фурье, приходим к выводу, что произвольный сигнал с известной спектральной плотностью можно записать как сумму двух составляющих, каждая из которых содержит или только положительные, или только отрицательные частоты:

(3.1)

 

Назовём функцию

(3.2)

аналитическим сигналом, отвечающим колебанию S(t).

Итак, аналитический сигнал:

(3.6)

На комплексной плоскости этот сигнал отображается вектором, модуль и фазовый угол которого изменяются во времени. Проекция аналитического сигнала на вещественную ось в любой момент времени равна исходному сигналу .

 

 

(3.8)

Анализируя (3.7) и (3.8), можно убедиться в том, что спектральная плотность исходного и сопряжённого сигналов связаны между собой следующим образом:

. (3.9)


Эта страница нарушает авторские права

allrefrs.ru - 2019 год. Все права принадлежат их авторам!