Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Статистическая физика и термодинамика



 

Кинематика поступательного и вращательного движения

 

Тестовые задания

 

1.1. Вектор скорости …

1) является количественной мерой изменения положения материальной точки

2) всегда направлен по касательной к траектории в той точке, через которую проходит движущееся тело

3) всегда направлен вдоль вектора перемещения

4) всегда направлен вдоль вектора ускорения

5) направлен перпендикулярно радиус-вектору материальной точки

 

1.2.Вектор средней скорости материальной точки совпадает по направлению с …

1) касательной к траектории

2) радиус-вектором, определяющим положение точки

3) вектором полного ускорения

4) вектором нормального ускорения

5) вектором перемещения

 

1.3.Материальная точка движется равномерно по окружности радиусом R с периодом Т. Модуль вектора средней скорости за четверть оборота равен …

1) 2) 3) 4) 5)

1.4.Материальная точка движется равномерно по окружности со скоростью . Модуль изменения вектора скорости за время, равное половине периода Т, равен …

1) 0 2) 3) 4) 5)

 

1.5.Материальная точка движется равномерно по окружности радиусом со скоростью . Изменение модуля вектора скорости за время, равное половине периода Т, равен …

1) 2) 03) 4) 5)

–2
, м/с
, с
–1
–3


1.6. Зависимость проекции скорости движения материальной точки по прямой от времени дана на рисунке. Перемещение материальной точки за первые 5 с движения, равно … м.

 

 

1) 6 2) 5,5 3) 7 4) 5 5) 8

1 2 3 4 5 t, c
, м/с   –2  


1.7.Зависимость скорости движения материальной точки по прямой от времени дана на рисунке. Среднее значение модуля скорости движения материальной точки в интервале времени 0-5 с равно … м/с.

1) 1,5 2) 0,25 3) 2,5 4) 0,2 5) 1,4

1.8. Поезд движется на подъеме со скоростью , а на спуске со скоростью . Средняя скорость поезда на всем пути, если длина спуска равна длине подъема, определяется формулой …

1) 2) 3) 4) 5)

1.9. Радиус-вектор частицы определяется выражением (А = 3 м/c2, В = 4 м/c2, C = 7 м). Путь, пройденный частицей за первые 2 с движения, равен … м.

1) 15 2) 20 3) 21 4) 35 5) 42

 

1.10.Материальная точка движется так, что радиус-вектор меняется со временем по закону (м). Скорость точки определяется выражением …



1)

2)

3)

4)

5)

 

1.11. Радиус вектор точки изменяется со временем по закону (м). Скорость υточки в момент t = 2c по модулю равна … м/с.

1) 12,2 2) 24,1 3) 24,3 4) 26 5) 29

y
х
А

1.12. Радиус-вектор частицы изменяется со временем по закону . В момент времени t = 1 с частица оказалась в некоторой т. А. Ускорение частицы в этот момент времени имеет направление …

 

 

1) 1 2) 2 3) 3 4) 4 5) 5

 

1.13.Из точек А и В навстречу друг другу движутся два тела. Уравнения движения тел имеют вид: (А = 2 м/с, В = 2,5 м/с2) и (С = 300 м, D = 3 м/с). Тела встретятся через время, равное … с.

1) 5 2) 11,2 3) 10 4) 7,8 5) 5,6

 

1.14. Две материальные точки движутся согласно уравнениям: (м), (м). Их скорости равны в момент времени … с.

1) 0,94 2) 0,54 3) 0,65 4) 0,74 5) 0,82

 

1.15. Зависимость пройденного телом пути от времени дается уравнением S = A t+B t2 (A = 2 м/с, В = 1 м/с2). Средняя скорость тела за вторую секунду его движения равна … м/с.

1) 11 2) 5 3) 5,5 4) 6 5) 7

1.16.Две материальные точки движутся согласно уравнениям: (м) и (м). Ускорения этих точек будут одинаковы в момент времени … с.

1) 1,00 2) 0,235 3) 0,542 4) 0,845 5) 0,9

 

1.17. Тело начинает двигаться из состояния покоя с постоянным ускорением 2 см/с2. За третью секунду своего движения оно пройдет путь … см.

1) 9 2) 2 3) 3 4) 4 5) 5

1.18.Материальная точка начинает двигаться вдоль прямой так, что её ускорение прямо пропорционально квадрату времени ( , где – известная постоянная). Путь, пройденный телом, зависит от времени как …



1) от времени не зависит

2) 3) 4) 5)

 

1.19. Вертолет поднимается вертикально вверх со скоростью 10 м/с. На высоте 100 м из него выбрасывается вверх предмет со скоростью 2 м/с относительно вертолета. Предмет упадет на землю через … с.

1) 4,5 2) 5,3 3) 5,6 4) 5,8 5) 6,0

 

1.20.Из одной и той же точки с интервалом 2 с брошены вертикально вверх два шарика с одинаковыми скоростями 30 м/с. Они столкнутся после броска первого шарика через … с.

1) 1 2) 2 3) 3 4) 4 5) 5

1.21. Камень падает с высоты . За последнюю секунду своего падения камень прошел путь, равный … м. .

1) 1050 2) 150 3) 300 4) 450 5) 600

 

1.22. Мяч брошен под углом 60º к горизонту с начальной скоростью 10 м/с. Скорость мяча через 0,2 с после броска равна … м/с.

1) 2 2) 8,4 3) 8,7 4) 9,2 5) 12,5

1.23. Камень брошен с башни в горизонтальном направлении. Через 3 с вектор скорости камня составил угол в 45º с горизонтом. Начальная скорость камня равна … в м/с.

1) 10 2) 15 3) 3 4) 20 5) 30

α
А
В
С
Е
D
 
1.24.Камень бросили под углом к горизонту со скоростью . Его траектория в однородном поле тяжести изображена на рисунке. Модули нормального аn и тангенциального аτ ускорений на участке А-В-С соответственно …

1) увеличивается; увеличивается

2) уменьшается; уменьшается

3) увеличивается; уменьшается

4) уменьшается; увеличивается

5) уменьшается; не изменяется

1.25.Тело брошено под углом к горизонту с начальной скоростью . В момент максимального подъема тела тангенциальное ускорение равно …

1) 2) 3) 4) 5) 0

1.26.Тело брошено под углом к горизонту с начальной скоростью . В момент максимального подъема тела радиус кривизны траектории равен …

1) 0 2) 3) 4) 5)

 

1.27.Скорость камня в точке его падения составила с горизонтом угол . Нормальное ускорение камня в момент падения равно …

1) 2) 3) 4) 5)


α
S
 
1.28.Два тела брошены под одним и тем же углом к горизонту с начальными скоростями и . Если сопротивлением воздуха пренебречь, то соотношение дальностей полета S2 / S1 равно …

1) 2) 3 3) 4) 9 5) 27

аτ
t
1.29.Тангенциальное ускорение точки меняется согласно графику. Такому движению может соответствовать зависимость скорости от времени …

 

 

а б в г
υ
t
υ
t
υ
t
υ
t

1) а 2) б 3) в 4) г

 

1.30. Материальная точка движется замедленно по криволинейной траектории. Направление скорости показано на рисунке. Направление векторов полного и тангенциального ускорений правильно изображено на рисунках соответственно …

а
>
б
>
в
>
г
>
д
>

1) в; г 2) а; б 3) б; а 4) а; в 5) г; а

1.31. Материальная точка М движется по окружности со скоростью . На рис. 1 показан график зависимости скорости от времени. На рис. 2 укажите направление полного ускорения в т. М в момент времени t3.

t
t3
t2
t1
t
M
τ
О
Рис. 1
Рис. 2

1) 5 2) 1 3) 2 4) 3 5) 4

1.32.При равнозамедленном движении материальной точки по окружности по часовой стрелке вектор ее полного ускорения имеет направление, указанное на рисунке цифрой …

 

1) 1 2) 2 3) 3 4) 4 5) равен нулю

 

А
В
С
Е
D
 
1.33.Камень бросили под углом к горизонту со скоростью . Его траектория в поле силы тяжести изображена на рисунке. Модуль полного ускорения камня …

1) максимален в т. А и Е

2) максимален в т. В и D

3) во всех точках одинаков

4) максимален в т. С

 

А
В
1.34. Тело движется с постоянным нормальным ускорением по траектории, изображенной на рисунке. Для величины скорости тела в т. А и величины скорости тела в т. В справедливо соотношение …

1) 2)

3) 4)

5)

h fKzkYxUlo6AdYPeGkbCeeUdQWOfjm77Lsw6yCZruEZd6QrAr7NrwMzFtx5meNBg5GSUZSafe3lYa vQVlPVXvqpmqoMiFjIx+yBgPQ60HkpL4sNY0yRmWzoKypkr7EAnKJVPZI6akk8rYtH6MIOPmZ+UX z7XkellZUJ4oVi8w87rE9RYCMu2y9KCJl7Vhek6nKfgciuWUgLo8gF/y0lpQ/rPqXTUEWSoCRCBF RM71GL8A6dcmmGLTf5vvr+l7bArWynwuyxO+jglNmbQWlCmxPqWXHCEgozvyMj0jtSJOi5WneEab tADNCNQ0irUdydpG+nWJEC9CATeTTkkSmWsqIGs2yysyBJ0EDciAo7xEFmxSIbnpJShQdklLNFOt gUqZ9BYUmN7jIlSK2yK5yCJoQILizorkJKugIrlRUCkaBZWCmc3+AdOizh2wLk2pAAAAAElFTkSu QmCCUEsBAi0AFAAGAAgAAAAhALGCZ7YKAQAAEwIAABMAAAAAAAAAAAAAAAAAAAAAAFtDb250ZW50 X1R5cGVzXS54bWxQSwECLQAUAAYACAAAACEAOP0h/9YAAACUAQAACwAAAAAAAAAAAAAAAAA7AQAA X3JlbHMvLnJlbHNQSwECLQAUAAYACAAAACEA/Y4FPRcCAABjBAAADgAAAAAAAAAAAAAAAAA6AgAA ZHJzL2Uyb0RvYy54bWxQSwECLQAUAAYACAAAACEAqiYOvrwAAAAhAQAAGQAAAAAAAAAAAAAAAAB9 BAAAZHJzL19yZWxzL2Uyb0RvYy54bWwucmVsc1BLAQItABQABgAIAAAAIQDitnMz4AAAAAkBAAAP AAAAAAAAAAAAAAAAAHAFAABkcnMvZG93bnJldi54bWxQSwECLQAKAAAAAAAAACEAr1K8f8wFAADM BQAAFAAAAAAAAAAAAAAAAAB9BgAAZHJzL21lZGlhL2ltYWdlMS5wbmdQSwUGAAAAAAYABgB8AQAA ewwAAAAA "> 1.35.Тело движется с постоянным нормальным ускорением по траектории, изображенной на рисунке. При движении в направлении, указанном стрелкой, величина скорости тела …

1) не изменяется 2) увеличивается 3) уменьшается

 

M
1.36.Точка М движется по спирали с постоянной по величине скоростью в направлении, указанном стрелками. При этом величина полного ускорения …

 

 

1) уменьшается 2) не изменяется 3) увеличивается

 

1.37.Материальная точка движется равномерно по окружности радиусом со скоростью . Модуль изменения вектора ускорения за время, равное половине периода Т, равен …

1) 2) 03) 4) 5)

1.38.Точка движется по окружности радиусом R = 2 м согласно уравнению l = Аt 3, А = 2 м/с3, l – длина дуги от начала движения. Нормальное ускорение равно тангенциальному в момент времени … с.

1) 2 2) 0,874 3) 0,760 4) 0,667 5) 0,3

1.39.Две материальные точки начинают двигаться по окружности из одной начальной точки: первая с ускорением 0,10 рад/с2, вторая – с ускорением 0,15 рад/с2. Впервые после начала движения они встретятся через … с.

1) 0,2 2) 31,7 3) 47,5 4) 15,8 5) 75,0

1.40. Частица движется вдоль окружности радиусом 1 м в соответствии с уравнением , где φ – в радианах, t – в секундах. Скорость частицы будет равна нулю в момент времени, равный … с.

1) 1 2) 2 3) 2,5 4) 3 5) 4

1.41.Колесо вращается так, как показано на рисунке белой стрелкой. К ободу колеса приложена сила , направленная по касательной. Правильно изображает направление угловой скорости колеса вектор …

 

1) 5 2) 4 3) 1 4) 3 5) 2

1.42. Материальная точка движется равнозамедленно по окружности, лежащей в вертикальной плоскости, по часовой стрелке. Вектора угловой скорости и углового ускорения направлены соответственно …

1) к нам; от нас

2) по касательной к траектории; к нам

3) к нам; по радиусу от центра

4) от нас; по касательной к траектории

5) от нас; к нам

 

1.43.Диск вращается вокруг своей оси, изменяя проекцию своей угловой скорости ωZ(t) так, как показано на рисунке. Вектор углового ускорения направлен по оси Z в интервале времени …

t3
t4
Z
ωZ
t1
t
t2

1) от 0 до t1 и от t3 до t4

2) от t1 до t2 и от t3 до t4

3) от 0 до t1 и от t1 до t2

4) от t2 до t3и от t3 до t4

5) от t1 до t2 и от t2 до t3

1.44. Закон изменения угла поворота φ со временем имеет вид , где А = 3 рад/с3, В = 5 рад/с2, С = 7 рад. Угловая скорость (рад/с) и угловое ускорение (рад/с2) в момент времени соответственно равны …

1) 19; 56 2) 56; 46 3) 88; 56 4) 86; 19 5) 76; 29

1.45. Точка вращается по окружности радиусом согласно уравнению φ = Аt3+Bt2+Ct, где А = 7 рад/с3, В = 8 рад/c2, С = 4 рад/с. Нормальное ускорение точки и касательное ускорение определяются соответственно выражениями …

А)

Б)

В)

Г)

Д)

1) А; Г 2) В; А 3) Д; Г 4) Д; Б 5) А; Б

 

1.46.Тело вращается вокруг неподвижной оси по закону , где А = 8 рад, В = 20 рад/с, С = 2 рад/с2. Тангенциальное ускорение точки, находящейся на расстоянии R = 0,1 м от оси вращения, в момент времени t = 4 с равно … м/с2.

1) 3,20 2) 1,65 3) 1,60 4) 0,40 5) 0

 

1.47.На вал радиусом 10 см намотана нить, к концу которой привязана гиря. Опускаясь равноускоренно, гиря прошла расстояние 5 см за 2 с. Тангенциальное ускорение точки, лежащей на поверхности вала, равно … см/с2.

1) 25 2) 0,5 3) 5 4) 2,5 5) 3,5

 

1.48.Частица из состояния покоя начала двигаться по дуге окружности радиусом R = 1 м с постоянным угловым ускорением ε = 2 рад/с2. Отношение нормального ускорения к тангенциальному через одну секунду равно …

1) 8 2) 2 3) 1 4) 4 5) 3

 

1.49. Материальная точка вращается в горизонтальной плоскости относительно неподвижной оси с угловым ускорением ε = А t2, где А = 2 рад/с4. При t = 0 ω0 = 0. Закон изменения угловой скорости имеет вид …

1) ω = 3/2 t 3 2) ω = 2t 3 3) ω = 2/3 t 3 4) ω = 4t 5) ω = 4t 3

1.50.Закон изменения угловой скорости материальной точки имеет вид , где А = 10 рад/с, В = 6 рад/с2. Угол поворота в момент времени t = 5 с равен … рад.

1) 6 2) 40 3) 65 4) 80 5) 125

 

1.51.Маховик вращается равнозамедленно с угловым ускорением ε = 2 рад/с2. Угол поворота φ при изменении частоты вращения от n1 = 240 мин –1 до n2 = 90 мин –1 равен … рад.

1) 4 2) 1479 3) 136 4) 22 5) 5

 

1.52. Тело движется по окружности так, что его угловая скорость изменяется по закону рад/с. До остановки оно сделает … оборотов.

1) 4 2) 5 3) 6,28 4) 10 5) 12,5

1.53.Если и – тангенциальная и нормальная составляющие ускорения, то для прямолинейного равнопеременного, равномерного криволинейного и прямолинейного равномерного движения выполняются соответственно соотношения …

А) и Б) и В) и

Г) и Д) и

1) В; Д; А 2) Д; В; Б 3) В; Г; А 4) Д; Б; А 5) Г; В; Б

 

Задачи

 

1.54.По гладкой наклонной доске пустили катиться снизу вверх маленький брусок. На расстоянии l = 30 см брусок побывал дважды: через t1 = 1 с и через t2 = 2 c после начала движения. Определите начальную скорость бруска . [υ0 = 0,45 м/с]

 

1.55.Движение точки по кривой задано уравнениями и , где , где . Найдите уравнение траектории точки, ее скорость υ и полное ускорение a в момент времени . ; ;

1.56.С башни брошен камень в горизонтальном направлении с начальной скоростью 40 м/с. Вычислить скорость камня через 3 с после начала движения. Какой угол образует вектор скорости камня с плоскостью горизонта в этот момент? ;

 

1.57.Снаряд вылетел со скоростью 30 м/с под углом 60º к горизонту. Чему равен радиус кривизны траектории снаряда через 2 с после выстрела?

 

1.58.Мяч брошен со скоростью под углом α к горизонту. Найдите и , если максимальная высота подъема мяча , радиус кривизны траектории мяча в этой точке . ;

 

1.59.Под каким углом к горизонту надо бросить тело, чтобы центр кривизны его траектории в вершине находился на земле?

 

1.60.Точка движется по окружности радиусом R = 2 см. Зависимость пути от времени дается уравнением S = At3, где А = 0,1 см/с3. Найдите нормальное (аn) и тангенциальное (аτ) ускорения точки в момент, когда линейная скорость точки .

 

1.61.Точка движется по окружности радиусом согласно уравнению , где . В какой момент времени t нормальное ускорение аn будет равно тангенциальному аτ? Определите полное ускорение в этот момент времени. (S – путь, проходимый телом).

 

1.62.Зависимость угла поворота от времени для точки, лежащей на ободе колеса радиусом R, задается уравнением , где , , , . К концу третьей секунды нормальное ускорение равно 153 м/с2. Определите радиус колеса.

1.63. Диск радиусом 10 см, находившийся в состоянии покоя, начал вращаться с постоянным угловым ускорением 0,5 рад/с2. Найдите касательное, нормальное и полное ускорения точек на окружности диска в конце второй секунды после начала вращения.

 

1.64.Автомобиль движется по закруглению шоссе, имеющему радиус кривизны R = 10 м. Уравнение движения автомобиля (м/с2). ( – означает криволинейную координату, отсчитанную от некоторой начальной точки на окружности). Найдите полное ускорение a в момент времени .

 

1.65.Диск радиусом R =10 см вращается так, что зависимость линейной скорости точек, лежащих на ободе диска, от времени задается уравнением ( ). Определите момент времени, когда вектор полного ускорения образует с радиусом колеса угол .

 

1.66.Материальная точка начинает движение по окружности радиусом 12,5 см с постоянным тангенциальным ускорением 0,5 см/с2. Определите момент времени, когда угол между векторами ускорения и скорости равен 45º и путь, пройденный точкой до этого момента.

 

1.67.Точка движется по окружности радиусом R = 10 см с постоянным тангенциальным ускорением аτ. Найдите тангенциальное ускорение аτ точки, если известно, что к концу пятого оборота после начала движения линейная скорость точки .

 

 


Эта страница нарушает авторские права

allrefrs.ru - 2018 год. Все права принадлежат их авторам!