Главная Обратная связь Поможем написать вашу работу!

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






МАТЕМАТИЧЕСКИЕ СПОСОБНОСТИ И ЛИЧНОСТЬ



Прежде всего следует отметить характеризующее способных математиков и совершенно необходимое для успешной деятель­ности в области математики «единство склонностей и способно­стей в призвании», выражающееся в избирательно-положитель­ном отношении к математике, наличии глубоких и действенных интересов в соответствующей области, стремлении и потребности заниматься ею, страстной увлеченности делом. Нельзя стать твор­ческим работником в области математики, не переживая увлечен­ности этой работой, — она порождает стремление к поискам, мо­билизует трудоспособность, активность. Без склонности к матема­тике не может быть подлинных способностей к ней. Если ученик не чувствует никакой склонности к математике, то даже хорошие способности вряд ли обеспечат вполне успешное овладение мате­матикой. Роль, которую здесь играют склонность, интерес, сво­дится к тому, что интересующийся математикой человек усиленно занимается ею, а следовательно, энергично упражняет и развива­ет свои способности. На это указывают постоянно сами матема­тики, об этом свидетельствуют вся их жизнь и творчество...

Составленные нами характеристики одаренных учащихся ярко свидетельствуют о том, что способности действенно развивают­ся только при наличии склонностей или даже своеобразной потреб­ности в математической деятельности (в относительно элемен­тарных ее формах). Все без исключения наблюдаемые нами дети обладали обостренным интересом к математике, склонностью за­ниматься ею, ненасытным стремлением к приобретению знаний по математике, решению задач.

Но если способности, как правило, связаны со склонностью, то это не носит все-таки характера всеобщего закона. Ошибочно было бы, скажем, диагностировать наличие или отсутствие Спо­собностей по тому, имеется ли и как ярко выражена склонность к соответствующему виду деятельности. В отдельных случаях здесь может быть и расхождение...

В школе нередко встречаются такие случаи: способный к ма­тематике ученик мало интересуется ею и не проявляет особых успехоз в овладении этим предметом. Но если учитель сумеет пробудить у него интерес к математике и склонность заниматься ею, то такой ученик, «захваченный» математикой, может быстро добиться больших успехов. Подобные случаи имели место и в жизни известных ученых-математиков (Н. И. Лобачевский, М. В. Остроградский, Н. Н. Лузин и другие).



...Переживаемые человеком эмоции являются важным факто­ром развития способностей к любой деятельности, не исключая и математической. Радость творчества, чувство удовлетворения от напряженной умственной работы, эмоциональное наслаждение этим процессом повышают умственный тонус человека, мобили-


зук>т его силы,: заставляют преодолевать трудности. Равнодуш­ный человек ие может быть творцом. Все изученные нами одарен­ные дети отличались глубоким эмоциональным отношением к; ма­тематической деятельности, переживали настоящую радость, выз­ванную каждым новым достижением. ,<...>

Большое значение в математическом творчестве имеют свое­образные эстетические чувства. Известный математик А. Пуанка­ре писал о подлинно эстетическом чувстве, которое переживают математики, — чувстве математической красоты, гармонии чисел и форм, о чувстве геометрического изящества. «Математик тво­рит, потому что красота мыслительных построений приносит ему радость», — писал Г. Ревеш. Это переживание изящества решения было очень характерным для наблюдаемых нами способных уча­щихся. «Красивое решение!», «Вот этот прием, как хорошая шах­матная комбинация, вызывает у меня чувство удовольствия»,— говорили школьники. И весь нх облик свидетельствовал о пере­живаемом ими эстетическом чувстве — их глаза радостно блесте­ли, они довольно потирали руки, смеялись, приглашали друг дру­га полюбоваться остроумным ходом мыслн, особенно «изящным» решением.



Возможность полного и интенсивного развития математических способностей, как и способностей вообще, всецело зависит от уровня развития характерологических черт, особенно волевых черт характера. <...;>

Как бы нн были блестящи способности человека, но если у не­го нет привычки усидчиво и упорно работать, он вряд ли способен достигнуть больших успехов в деятельности. Он в лучшем слу­чае так н останется лишь потенциально способным... Упорство, настойчивость, работоспособность, трудолюбие постоянно прояв­лялись в математической деятельности наблюдаемых нами ода­ренных учащихся... Впрочем, бывают и исключения. Некоторые школьники, обладающие математическими способностями, оши­бочно считают, что в области математики им не надо особенно трудиться, так как способности нх «вывезут». Учителя и родители должны постоянно убеждать их в том, что овладение математи­кой даже при наличии способностей требует трудолюбия, настой­чивости, усидчивости, должны терпеливо воспитывать этн каче­ства, побуждать школьников не отступать перед трудностями прн решении математических задач, доводить дело до кон­ца. <...>

Разумеется, все сказанное выше о характерологических чер­тах ученого-математика надо понимать в том смысле, что указан­ные черты могут проявляться избирательно, только в математи­ческой деятельности, не характеризуя других сторон его жизнн и деятельности. Совершенно правильно указывают А. Г. Ковалев и В. Н. Мясищев, что ученый, в том числе н математик, может иметь слабую волю, плохую работоспособность, бысгро утом­ляться, но в математической деятельности он же может проявлять




совсем другие черты: высокую организованность, настойчивость, работоспособность.

Еще одна черта Характера свойственна подлинному ученому — критическое Отношение к себе, своим возможностям, своим дости­жениям, скромность, правильное отношение к своим способно­стям. Надо иметь в виду, что при неправильном отношении к способному школьнику —захваливании его, чрезмерном преуве­личении его достижений, афишировании его способностей, под­черкивании его превосходства над другими — очень легко вну­шить ему веру в свою избранность, исключительность, заразить его «стойким вирусом зазнайства». <...>

И наконец, последнее. Математическое развитие человека не­возможно без повышения уровня его общей культуры. Нужно всегда стремиться к всестороннему, гармоничному развитию лич­ности. Своеобразный «нигилизм» ко всему, кроме математики, резко одностороннее, «однобокое» развитие способностей не могут способствовать успешности в математической деятельности.

Анализируя схему структуры математической одаренности, мы можем заметить, что определенные моменты в характеристике перцептивной, интеллектуальной и мнемической сторон матема­тической деятельности имеют общее значение... Поэтому развер­нутую схему структуры можно представить и в иной, чрезвычай­но сжатой формуле: математическая одаренность характеризует­ся обобщенным, свернутым и гибким мышлением в сфере матема­тических отношений, числовой и знаковой символики н матема­тическим складом ума. Эта особенность математического мышле­ния приводит к увеличению скорости переработки математиче­ской информации (что связано с заменой большого объема ин­формации малым объемом — за счет обобщения и свертывания) и, следовательно, экономии нервио-психических сил... Указанные способности в разной степени выражены у способных, средних н неспособных учеников. У способных при некоторых условиях такие ассоциации образуются «с места», при минимальном ко­личестве упражнений. У неспособных же они образуются с чрез­вычайным трудом. Для средних же учащихся необходимым ус­ловием постепенного образования таких ассоциаций является си­стеме специально организованных упражнений, тренировка <...>


Просмотров 665

Эта страница нарушает авторские права




allrefrs.ru - 2021 год. Все права принадлежат их авторам!