Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Примеры практического применения генетических алгоритмов



Генетические алгоритмы нашли широкое практическое при­менение в менеджменте и управлении для решения задач по­иска оптимальных решений, формирования моделей и прогнози­рования значений различных показателей. Они осуществляют поиск лучших решений на основе заданной целевой функции. Значение целевой функции для многих задач весьма непросто вычислить, поэтому в ряде случаев при исследовании плохо обус­ловленных проблем с этой целью применяются нейронные сети, позволяющие найти решение при отсутствии явной модели. Кро­ме того, для вычисления целевых функций в условиях неопреде­ленности применяются статистические методы и методы логиче­ского вывода в четкой или нечеткой среде.

Формирование системы прогнозирующих правил. Генетические алгоритмы могут использоваться для нахождения оптимального набора правил, позволяющих прогнозировать страховые риски с учетом ряда определяющих его факторов. Для решения этой задачи необходимо иметь базу данных, содержащую фактические значения переменных, влияющих на страховой риск.

Рассмотрим пример использования генетического алгоритма для оптимизации экспертных правил в сфере страхования.

Допустим, что компания, занимающаяся страхованием авто­мобилей, использует базу данных, которая помимо прочих вклю­чает следующие факторы: максимальную скорость автомобиля (км/час), возраст автомобиля (лет), возраст водителя (лет) и риск, определенный экспертно по некоторой шкале на основе анализа обращений клиентов о выплате компенсации по страховым случаям. Правила, задающие оценку страхового риска, сконструиро­ваны в виде:

 

Рис. 6.6. Схема классифицирующей системы

 

ЕСЛИ максимальная скорость автомобиля лежит в диапазоне И возрастной диапазон автомобиля И возраст водителя находится в диапазоне ТО страховой риск имеет значение

Для конкретной выборки из БД это правило может иметь сле­дующий вид:

ЕСЛИ максимальная скорость [91 — 100 км/час] И возраст ав­томобиля [11 — 15 лет] И возраст водителя [31 - 40 лет], ТО риск . Здесь уровень риска отображается на интервал [1,5], при этом высокие значения соответствуют большим страховым рискам.

Подобные правила, основанные на фактических значениях переменных, случайным образом выбранных из БД, составляют исходную популяцию. Для каждой из переменных, входящих в популяцию, предварительно задается диапазон состояний. На­пример, переменная «возраст автомобиля», может иметь пять возможных состояний: 1 — 5, 6 — 10, 11 — 15, 16 — 20, 21 — 25 лет. Далее сформированная популяция обрабатывается генетически­ми операторами с учетом специфики рассматриваемой задачи. Целевая функция должна показывать, насколько точно сгенери­рованные правила описывают реальные страховые случаи, храня­щиеся в БД. Например, если какое-то правило описывает 4 слу­чая из 5, то значение целевой функции будет 4/5, или 80%.



Новые члены популяции образуются в результате скрещива­ния и мутации начального набора правил. В данном случае при скрещивании двух правил происходит обмен парами «атрибут -значение» на участке строки после точки кроссинговера. В ре­зультате образуются два новых правила, жизнеспособность кото­рых оценивается по тому, насколько удачно они описывают стра­ховые случаи, которые имели место в прошлом. Мутация правил обеспечивает необходимое разнообразие признаков и заключает­ся в изменении значений атрибутов с заданной вероятностью. Та­ким образом, первоначально сформированный набор правил преобразуется случайно направленным способом в другой набор, который лучше остальных описывает накопленную статистику страховых случаев. Результирующая система правил в дальней­шем используется для прогнозирования страховых рисков.

Следует отметить, что подобный подход к формированию си­стемы правил может приводить к некорректным правилам про­дукций. В то же время он освобождает разработчиков и экспертов от трудоемкой работы по формулированию и оценке правил, так как некорректные результаты отбрасываются при сопоставлении сгенерированных продукций с реальными страховыми ситуация­ми. Привлечение прошлого опыта для оценки пригодности про­гнозирующих правил не позволяет предвидеть новые ситуации, которые не имели места в прошлом. Поэтому при решении задач описанным способом очень важно следить за своевременным по­полнением и модификацией информации в БД, которая отража­ет появление новых фактов, атрибутов и тенденций.



Классифицирующие системы.На основе генетических алго­ритмов Дж. Холланд предложил классифицирующие системы, которые можно использовать для целей управления . Классифицирующая система состоит из трех вложенных друг в друга подсистем (рис.6): классификатора, системы обучения и генетического алгоритма. В классификатор поступают внешние

сообщения и положительные оценки (поощрения) его действий. Классификатор содержит правила вида ЕСЛИ<условие>, ТО<со-общение>, с помощью которых формируются выходные сообще­ния. Обучающая система выполняет оценку используемых пра­вил. Генетический алгоритм предназначен для случайно направ­ленной модификации правил. Схема обработки правил представ­лена на рис. 7.

Рис.7. Схема обработки правил в классифицирующей системе

Каждому правилу приписывается численная оценка силы пра­вила. Сообщения и условные части правил (антецеденты) форму­лируются в одних и тех же терминах. Список сообщений содер­жит все текущие сообщения — поступающие из внешней среды и те, что формируются внутри системы. В процессе работы КС все сообщения из списка сравниваются с условиями всех правил. Классификатор выполняет следующие действия.

Шаг 1. В список сообщений (рабочую память) добавляются все сообщения, поступившие извне.

Шаг 2. Проводится сравнение всех сообщений из списка с антецедентами всех правил. Все правила, антецеденты которых совпадают с присутствующими в рабочей памяти сообщениями, записываются в список правил М.

Шаг 3. Выполняются правила из списка М, при этом сооб­щения каждого правила посылаются в список новых сообщений.

Ш а г 4. Обновление списка сообщений.

Шаг 5. Сообщения из списка посылаются в выходной ин­терфейс. Вероятность выдачи сообщения зависит от силы прави­ла: не каждое сообщение выдается на управляемый объект, часть их может быть связана с изменением внутренней структуры сис­темы (правил).

Ш а г 6. Возврат к шагу 1.

В процессе обучения каждому правилу присваивается чис­ленное значение силы, а алгоритм обучения регулирует это зна­чение с учетом полезности правила для системы. На шаге 3 опи­санного алгоритма для каждого отобранного правила С вычисля­ется цена по формуле — сила прави­ла С в момент t; — специфичность условия в правиле, равная числу символов, отличающихся от символа * в условии, деленно­му на длину условия; — коэффициент, который обычно прини­мают равным 1/8 или 1/6.

Цена В определяет вероятность того, что правило пошлет со­общение в список новых сообщений. Вероятностный подход позволяет аутсайдерам тоже изредка посылать сообщения, что при благоприятных условиях может сделать их лидерами.

Послать сообщение могут все правила с допустимым значе­нием В, т.е. такие, у которых В превышает определенный порог. Правило, пославшее сообщение в новый список, расплачивается за это уменьшением своей силы:

Для правил С, пославших сообщения, которые на следующем шаге работы оказались полезными (совпали с условиями прави­ла-победителя, имеющего высокую цену), оценка силы возраста­ет на долю В:

Правило полезно только тогда, когда его потребители в своих локальных действиях тоже получают выигрыш. В противном слу­чае правило обесценивается, так как его цена s уменьшается при отсылке сообщения. В свою очередь, полезность потребителей зависит от их потребителей и т.д. Цепочка приводит к конечным потребителям, достигающим цели и получающим поощрения от внешней среды.

Классификатор и обучающая система не порождают новых правил. Эту функцию выполняет генетический алгоритм, кото­рый работает с учетом силы правил, определенной в системе обу­чения. Работа генетического алгоритма рассмотрена в предшест­вующем примере.

Комбинированные методы и интеллектуальные системы.В на­стоящее время активно развиваются методы, основанные на объ­единении технологий инженерии знаний и генетических алго­ритмов. В области ГА разрабатываются операторы, ориентиро­ванные на обработку знаний.

Генетические алгоритмы используют в теории нечетких сис­тем для настройки параметров функций принадлежности. Инте­грация четких и нечетких нейронных сетей и генетических алго­ритмов обеспечивает реализацию оптимизационной задачи. Средства fuzzy-neuro-genetic используются в интеллектуальных системах и содержат следующие процедуры:

• преобразование входных примеров в нечеткое представ­
ление;

• извлечение знаний, представленных в виде продукций ЕС-
ЛИ-ТО из нечеткой обучающей выборки с помощью нейронной
сети;

• оптимизацию структуры продукционных правил с помощью
генетического алгоритма.

Активно развивается направление, ориентированное на ис­пользование генетических алгоритмов для обучения нейронных сетей ] и корректировки структуры уже обученной сети. В отличие от метода обратного распространения ошибки генетиче­ские алгоритмы мало чувствительны к архитектуре сети. Напом­ним, что основными характеристиками нейронной сети являют­ся следующие:

передаточные функции нейронов скрытых слоев, а также нейронов выходного слоя.

Сформулируем общую задачу оптимизации сети: при задан­ных количествах входных и выходных нейронов на основе задан­ного множества обучающих примеров определить оптимальные значения значения всех весовых коэффициентов межнейронных связей индекс межнейронной связи (синапса), — передаточные функции всех нейронов за исключением нейронов входного слоя. Критерием оптимизации является максимальное отклоне­ние выходного вектора сети от эталонного значения выхода Y, полученное в результате обработки всех примеров, т.е. необходи­мо найти

Даже для простых сетей эта задача является очень сложной, поэтому для ее решения применяется декомпозиция, т.е. сеть оп­тимизируется в процессе последовательного решения частных за­дач оптимизации. Например, на первом шаге подбираются опти­мальные значения затем определяется оптимальный вид передаточных функций нейронов, а на конечной стадии под­бираются веса межнейронных связей.

Генетические алгоритмы чаще всего применяются для улуч­шения характеристик ИНС, уже созданных и обученных с приме­нением других методов


Эта страница нарушает авторские права

allrefrs.ru - 2019 год. Все права принадлежат их авторам!