Главная Обратная связь Поможем написать вашу работу!

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Краткие теоретические сведения. Любой вид собственно термической обработки стали включает в себя нагрев до опреде­ленной температуры



Любой вид собственно термической обработки стали включает в себя нагрев до опреде­ленной температуры, выдержку ее при данной температуре и после­дующее охлаждение с заданной скоростью. Такой вид термической обработки может быть пред­ставлен графически в координатах «Температура-время» (рис. 20.1).

 

  Рисунок 20.1 – График собственно термической обработки

 

Основными технологическими параметрами собственно термической обработки являются:

- температура нагрева (Т °C);

- время выдержки (τ, с);

- скорость охлаждения (vохл, гр./с).

Именно они определяют, какие и насколько полно протекают фазовые превращения, формирующие конечную структуру сплавов в процессе термической обработки. На практике наиболее распространенными видами термической обработки сталей являются: отжиг, нормализация и закалка.

Первым этапом любого вида терми­ческой обработки являет­ся нагрев стали. В боль­шинстве случаев цель нагрева стали – получение аустенитной структуры. Выбор температуры нагрева уг­леродистой стали зависит от количества углерода в стали и вида термической обработки. Выбор температуры нагрева уг­леродистой стали осуще­ствляют, используя диаг­рамму состояния Fе-С (рис. 20.2).

 

  Рисунок 20.2 – Нижняя левая часть диаграммы состояния Fе-С

 

При полном отжиге нагрев доэвтектоидной стали проводят на 30-50 °С выше Ас3 и эвтектоидной стали – на 30-50 °С выше Ас1 (рис. 20.2). Заэвтектоидную сталь подвергают сфероидезирующему отжигу (нагрев на 30-50 °С выше Ас1, но ниже Аcm).

При нормализационном отжиге (нормализации) нагрев доэвтектоидной стали проводят на 30-50 °С выше Ас3, эвтектоидной стали – на 30-50 °С выше Ас1, а заэвтектоидной стали – на 30-50 °С выше Асm (рис. 20.2).

При закалке стали в масле или в воде нагрев доэвтектоидной стали проводят до температуры на 30-50 °С выше критической точки Ас3, нагрев эвтектоидной и заэвтектоидной стали проводят на 30-50 °С выше критической точки Ас1 (рис. 20.2).



Второй этап – это выдержка, которая должна обеспечить полный прогрев изделия по сечению и завершение фазовых превращений, а также полную гомогенизацию аустенита (т. е. равномерное распределение углерода в аустенитной структуре). Время выдержки зависит от размеров и формы изделия, а также от темпера­туры нагрева (табл. 20.1).

 

Таблица 20.1 – Время нагрева и выдержки образца или детали в зависимости от температуры нагрева, формы и размеров

 

Температура нагрева, °С   Продолжительность нагрева образца на 1 мм диаметра или на 1 мм толщины, мин
Круг Квадрат Пластина
2,0 1,5 1,0 0,8 0,4 3,0 2,2 1,5 1,2 0,6 4,0 3,0 2,0 1,6 0,8

 

Третьим этапом термической обработки является охлаждение стали из аустенитного состояния. Различная скорость охлаждения приводит к получению различных структур, а, следовательно, и различного сочетания механических свойств.

Рассмотрим превращения аустенита в зависимости от скорости охлаждения на примере эвтектоидной стали, содержащей 0,8 % С (рис. 20.3).

 

            Перлит х2000   Сорбит х1000/х15000   Троостит х1000/х15000     Верхний бейнит х1000   Нижний бейнит х1000     Мартенсит х1000    
а) б)
Рисунок 20.3 – Диаграмма изотермического распада аустенита и кривые охлаждения стали со скоростью (а): V1 – при отжиге; V2 – при нормализации; V3 – при закалке в масле; V4 и V5 – при закалке в воде. Vк – критическая скорость охлаждения стали. б – соответствующая микроструктура стали

 



В верхнем интервале температур (ΔТ1), т. е. ниже равновесной тем­пературы А1 и до температуры минимальной устойчивости аустенита tmin, равной для углеродистых сталей приблизительно 550 °C (рис. 20.3 а), аустенит распадается на феррито-цементитную смесь, имеющую плас­тинчатое строение (рис. 20.3 б).

Процесс образования феррито-цементитной смеси протекает следующим образом. Вследствие диффузии атомов углерода в аустените создаются объемы, обогащенные и обедненные углеродом по сравнению со средним содержанием углерода 0,8 %. Флуктуации кон­центрации при t<А1 способны создать условия для образования ус­тойчивых зародышей цементита (6,67 % С) и феррита (0,02 % С). Ес­ли зародыш цементита превышает критический размер для данной степени переохлаждения, то в этом месте зарождается пластинка цементита. Рост пластинки цементита за счет диффузии углерода приводит к обеднению углеродом лежащих рядом участков аустенита и превращению их в феррит.

Процесс повторяется, что ведет к обра­зованию в аустените так называемых перлитных колоний (областей, состоящих из чередующихся пластинок цементита и участков фер­рита (рис. 20.4).

 

 

Рисунок 20.4 – Схема образования перлита из аустенита

 

Расстояние между пластин­ками цементита Δ зависит от степени переохлажде­ния аустенита, которая, в свою очередь, определяется скоростью охлаждения. Чем выше скорость охлаждения, тем ниже температура превращения аустенита, меньше интенсивность диффузии, а, следовательно, и меньше межпластинчатое расстояние Δ, т. е. тем дисперснее феррито-цементитная смесь. Струк­туры называются соответственно перлит, сорбит, троостит (табл. 20.2). Повышение дисперсности феррито-цементитной смеси приводит к повышению твердости, прочности, но к снижению пластичности и ударной вязкости стали.



 

Таблица 20.2 – Основные виды термической обработки, а также структура и твердость эвтектоидной стали

 

Вид термической обработки Скорость охлаждения, гр./с Интервал температур превращения, °С Межплас- тинчатое расстояние Δ, мкм Твердость, HRC Структура
Полный отжиг 0,02-0,05 727-650 0,7-0,5 15-20 Перлит
Нормализация 3-5 650-600 0,25-0,20 25-30 Сорбит
Закалка в масле 80-100 600-550 0,15-0,10 40-45 Троостит
Закалка в воде 200-500 - 58-62 Мартенсит

 

При непрерывном охлаждении аустенита со скоростью 200-500 гр./с (табл. 20.2) до температуры начала мартенситного превращения (для углеродистых сталей эта температура, в зависимости от содержания углерода в стали, составляет от 350 до 100 °С) (рис. 20.3 а) начинается бездиффузионное превращение переох­лажденного аустенита, имеющего ГЦК решетку, в мартенсит с объемно-центрированной тетрагональной решеткой (ОЦТ). Тетрагональность решетки мартенсита вызвана наличием в ней избыточно­го количества углерода (рис. 20.5). Мартенсит имеет игольчатое строение (рис. 20.3 б), высокую твердость и низкую пластичность. Чем больше содержание углерода в мартенсите, тем больше искажение кристаллической решетки (больше отношение параметров решетки с/а), и тем выше его твердость.

 

    Рисунок 20.5 – Схема кристаллической решетки мартенсита

 

Получить структуру бейнит (верхний и нижней) (рис. 20.3) при непрерывном охлаждении стали невозможно. Для получения данной структуры используют, например, изотермическую закалку.

Для получения необходимых структур, а, следовательно, и заданных свойств углеродистую сталь подвергают различным видам термической обработки.

К основным видам термической обработки относятся: отжиг, нормализация, закалка. Они отличаются скоростью охлаждения стали из аустенитного состоя­ния (табл. 15.1).

Отжиг заключается в нагреве доэвтектоидной стали на 20-40 °С выше Ас3, эвтектоидной стали на 20-40 °С выше Ас1 и заэвтектоидной стали выше Ас1, но ниже Асm (рис. 20.2) + выдержка + медленное охлаждение с печью.

После отжига получают структуры, соответствующие диаграмме состояния Fе-С: для доэвтектоидных сталей – перлит + феррит; для эвтектоидной стали – перлит; для заэвтектоидных сталей – перлит + вторичный цементит.

Основная цель отжига – приведение структуры в равновесное состояние. Назначение – повышение пластичности стали, снятие остаточных напряжений, устранение дефектов структуры, улучшение обрабатываемости резанием, измельчение зерна, подготовка стали к последующим термообработкам.

Нормализация (нормалицационный отжиг) заключается в нагреве доэвтектоидной стали вы­ше точки Ас3; эвтектоидной стали – выше точки Ас1, и зазвтектоидные стали – выше точки Асm на 50-70 °С (рис. 20.2) + выдержка + охлаждении на воздухе. Структуры, получаемые после нормализации: для доэвтектоидной стали – сорбит + феррит; для эвтектоидной – сорбит; для зазвтектоидной стали – сорбит + вторичный цементит.

Цель нормализации та же, что и от­жига. Однако после нормализации твердость и прочность стали выше, чем после отжига. Чем больше углерода в стали, тем разница заме­тнее. Часто нормализация является окончательным видом термичес­кой обработки деталей машин.

Закалка заключается в нагреве дозвтектоидной стали выше Ас1 на 30-50 °С, эвтектоидной и заэвтектоидных сталей на 50-70 °С выше Аc1 (рис. 20.2) + выдержка + охлажде­ние в масле или воде. Цель закалки – получение неравновесных структур.

При закалке в масле получают структуры: для доэвтектоидной стали – троостит + феррит; для эвтектоидной стали – троостит; для зазвтектоидной стали – троостит + вторич­ный цементит.

Закалка в воде приводит к превращению переохлаж­денного аустенита в мартенсит. После закалки стали в воде обязательно проводят отпуск.

 

Задание

1. Изучить основные виды термической обработки углеродистой стали и получаемые при этом структуры.

2. Определить температуру нагрева исследуемой стали.

3. Провести охлаждение образцов с различной скоростью, используя различные виды термической обработки и среды охлаждения: отжиг (охлаждение с печью), нормализацию (охлаждение на воздухе), закалку в масле и воде. Скорость охлаждения следует определять по таблице 20.1.

4. Определить твердость стали в образцах, охлажденных с различной скоростью.

5. Результаты экспериментов представить в виде протокола ис­пытания (табл. 20.2). Полученную микроструктуру стали следует определять по ат­ласу микроструктур.

6. Построить график зависимости твердости стали (HRC) от скорости охлаждения.

7. Сделать вывод о влиянии скорости охлаждения на структуру и твердость углеродистой стали.

8. Написать отчет о проведенном исследовании в соответствии с п.п. 2-7.

 

Таблица 20.2 – Протокол испытаний

 

Марка стали Содержание углерода, % Вид термической обработки Скорость охлаждения, гр./с Твердость, HRC Микроструктура стали
             

Контрольные вопросы

1. Какие процессы происходят при распаде аустенита на феррито-цементитную смесь?

2. Назовите и охарактеризуйте основные виды термической обработки углеродистой стали.

3. Какие технологические параметры определяют вид термической обработки?

4. Как изменяется межпластинчатое расстояние и твердость стали с повышением скорости охлаждения? Почему?

5. Каковы цели отжига и закалки?

6. Какова структура и твердость углеродистой стали после закалки в масле и в воде?

7. Как выбирать температуру нагрева углеродистой стали при отжиге, нормализации и закалке?

8. Что такое мартенсит?


Лабораторная работа 21

 


Просмотров 307

Эта страница нарушает авторские права




allrefrs.ru - 2021 год. Все права принадлежат их авторам!