Главная Обратная связь Поможем написать вашу работу!

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Структурная организация белковой молекулы



Согласно классификации К. Линдерштрема-Ланга различают четыре уровня структурной организации белковой молекулы:

 
 

Первичная (одномерная, линейная) структура - это порядок или последовательность расположения аминокислотных остатков в пептидной цепи (включая -S-S- связи), ее химическое строение.

Пример: пептид ангиотензин-2, повышающий давление

Особенности строения пептидной связи:

 
 

Наличие плоской (компланарной) сопряженной системы в пептидном звене затрудняет вращение вокруг связи С-N

 

 

 
 

Мезомерия пептидной связи

 

Вторичная структура белков

В 1950 г. Лайнус Полинг предложил два вида пространственной структуры белков - альфа-спираль и бета-структуру. Эти понятия сохранились до настоящего времени как виды вторичной структуры белков. Кроме них сейчас различают ещё один, третий тип вторичной структуры - b-поворот. Вторичная структура белка - это локальная конформация полипептидной цепи, обусловленная вращением отдельных участков этой полипептидной цепи вокруг одинарных ковалентных связей.

Стабильность спирали поддерживают водородные связи между атомами пептидных группировок аминокислот, расположенных на соседних витках спирали. Все условия, ведущие к формированию спиральных структур, могут успешно реализоваться и при другой форме расположения полипептидной цепи. Эту альтернативную спирали форму назвали -структурой. Она формируется при укладке цепи в форме плоских шпилек. -структура также стабилизирована водородными связями. Из двух или более b-структурных участков полипептидной цепи формируется b-слой. В грубом приближении она плоская и напоминает лист. Однако из-за того, что плоскости пептидных групп в каждом b-структурном участке наклонены поочередно в разные стороны относительно направления этого участка, плоский b-слой приобретает складчатую форму.

b-поворот или b-изгиб - ещё один тип вторичной структуры, встречающийся во многих глобулярных белках в тех местах, где направление полипептидной цепи меняется на противоположное. Данная структура часто рассматривается как связующее звено между двумя уложенными антипараллельно b-участками в составе b-слоя. Она образуется в полипептидной цепи там, где встречается пролин. Дело в том, что эта аминокислота не может изгибаться, и там где она встречается в полипептидной цепи, a-спираль и b-структура обычно нарушаются. В этом месте образуется своеобразный излом - b-поворот. В b-повороте водородная связь замыкается через три аминокислотных остатка. Там, где встречается b-поворот, полипептидная цепь делает изгиб. b-повороты обычно находятся у поверхности белковой молекулы.



Схематическое изображение b-структуры. а) параллельное, б) антипараллельное расположение b-структурных участков полипептидной цепи в b-слое

 

Увеличение числа известных белков привело ученых к необходимости более подробно исследовать пространственную структуру полипептидных цепей. Оказалось, что несколько участков цепи, организованных в пространстве в форме a-спирали или b-структуры, могут объединяться, формируя так называемую надвторичную структуру. В белке может быть несколько организованных таким образом участков. Всех их можно подразделить на четыре класса: a/a, b/b, a/b и a + b, в зависимости от взаимного расположения в цепи a-спиральных и b-структурных участков.



Полипептидная цепь изображается в виде ленты, при этом a-спиральные участки представлены спиралями, b-структурные - стрелками, а нерегулярные - светлыми петлями. Боковые цепи не показаны, хотя во всех белках пространство между атомами основной цепи заполнено атомами боковых цепей. a/a структура состоит в основном из a-спиралей, b-участки в ней практически отсутствуют. a-спирали упакованы таким образом, что неполярные боковые цепи оказываются спрятанными внутрь. В b/b типе имеется несколько b-цепей и нет (или почти нет) a-спиралей. В a/b варианте a- и b-участки чередуются вдоль цепи. Часто b-участки образуют параллельный b-слой, окруженный a-спиралями. В a + b-типе a- и b-участки обычно располагаются в разных сегментах полипептидной цепи.

   

Варианты объединения a-спиральных и b-структурных участков (надвторичной структуры) в полипептидной цепи

 

В крупных белках при сворачивании полипептидной цепи часто образуются две или более пространственно разделенные области, называемые доменами. По своей

структуре каждый домен напоминает отдельный небольшой белок. Обычно в одном домене содержится от 40 до 300 остатков. Доменом называют участок белковой молекулы, образованный несколькими вторичными или надвторичными структурами, имеющий глобулярную форму. В разных белках они могут быть одинаково организованными участками и выполнять одинаковые функции. Домены часто обладают специфическими функциями, такими как связывание небольших молекул.

Обобщенное изображение кофермент-связывающего домена в составе различных дегидрогеназ. Этот домен состоит из двух одинаковых по структуре babab единиц (один - желтого и один - синего цвета). Каждая единица связывает НАД (никотинамидадениндинуклеотид) и образует в месте связывания складку.

Использование понятия "домен" позволило выделить целые семейства белков, имеющих общего предшественника, что проливает свет на процессы совершенствования живого мира.



В ряде случаев четко определить функции тех или иных доменов не удается. Между доменами в пределах одной и той же полипептидной цепи устанавливаеются гидрофобные контакты. В этих зонах формируется каталитический центр, а образующие его группы размещены в обоих доменах.

На этом уровне структурной организации белка еще не принимались во внимание возможности взаимодействия радикалов аминокислот между собой и с растворителем (водой), в котором белок должен выполнять свои функции.

Третичная структура белков

Третичной структурой белков назвали расположение в пространстве всей полипептидной цепи, отдельные участки которой имеют свою локальную конформацию, то есть сохраняют спиральные или b-структурные формы. Большая часть белков на уровне третичной структуры принимает глобулярную (шаровидную) форму. Это связано, в первую очередь, с тем, что многие неполярные группы радикалов аминокислот под влиянием полярного растворителя, воды, объединяются между собой в кластеры, исключающие воду. При этом они разрывают водородные связи между диполями воды, уменьшая энтропию, и сближаются на расстояния, доступные для электростатического взаимодействия между ними. Такое взаимодействие получило название "сил гидрофобного взаимодействия". Эти силы, требующие небольших усилий для разрыва, тем не менее приобретают важнейшее значение для стабилизации пространственной структуры белка. Аналогичным образом формируются липидные мицеллы. Поэтому при складывании полипептидной цепи гидрофобные радикалы оказываются внутри белковой молекулы, а гидрофильные - наружи, тем самым снижение энтропии становится минимальным.


Этапы пространственной укладки полипептидной цепи и приобретения ею третичной структуры

Важную роль в стабилизации третичной структуры белка играют водородные связи и ионное взаимодействие. Указанные силы успешно сочетают прочность структуры белка и ее довольно значительную подвижность, что чрезвычайно важно для выполнения функций. В ряде белков прочность структуры укрепляется дополнительно и ковалентными дисульфидными связями.

 

Связи, стабилизирующие третичную структуру белка. А. Ионная связь. Б. Водородная связь (три типа показаны). В. Гидрофобное взаимодействие (две формы - нижнее кластерного типа, а верхнее типа p-связи). Г. Дисульфидная связь.

 

 

В фибриллярных (нитевидных) белках третичная структура формируется или путем многослойной укладки плоских b-структур, или параллельной укладкой нескольких спиральных структур. В любом случае возникают ориентированные в длину волокнистые структуры. Такие волокна имеют высокую прочность. Примером такого белка может служить белок соединительной ткани - коллаген. Его молекула представляет своеобразную суперспираль, состоящую из 3-х спирально свернутых полипептидных цепей. Такие суперспирали, в свою очередь, укладываются в форме более толстых протофибрилл, объединяемых затем в коллагеновое волокно.

В заключение надо отметить, что для уникальному пространственному расположению атомов в молекуле белка (укладка полипептидной цепи в пространстве), которое "запрограммированно" самой аминокислотной последовательностью полипептидной цепи и поэтому образуется самопроизвольно, тем не менее нужны помощники. Эти помощники также являются белками и получили название "шапероны"(см.гл.10). Впервые они были открыты как "белки теплового шока" (hsp 60 и hsp 70). Их функция заключается в защите складывающейся полипептидной цепи от взаимодействия с другими многочисленными клеточными белками и, возможно, в ускорении этого процесса.


Просмотров 850

Эта страница нарушает авторские права




allrefrs.ru - 2021 год. Все права принадлежат их авторам!