Главная Обратная связь Поможем написать вашу работу!

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Климатические факторы внешней среды



Температура является наиболее важным климатическим фактором. От нее зависит интенсивность обмена веществ организмов и их географическое распространение.

Любой организм способен жить в пределах определенного диапазона температур. И хотя для разных видов организмов эти интервалы различны (эвритермные и стенотермные организмы), для большинства из них зона оптимальных температур, при которых жизненные функции осуществляются наиболее эффективно, сравнительно невелика. Диапазон температур, в которых может существовать жизнь, составляет примерно 300°С - от -200°С до +100°С. Но большинство видов и большая часть активности приурочены к еще более узкому диапазону температур. Нижний предел выносливости по отношению к температуре лимитируется точкой замерзания внутриклеточной жидкости, при достижении которой клетка обычно физически повреждается и гибнет в результате образования кристаллов льда. Верхний предел накладывает процесс денатурации ферментов. Определенные организмы, особенно в стадии покоя могут существовать, по крайней мере, некоторое время, при очень низких температурах, отдельные виды микроорганизмов, главным образом, бактерии и водоросли способны жить и размножаться при температурах, близких к точке кипения. Верхний предел для бактерий горячих источников составляет 88°С, для сине-зеленых водорослей - 80°С, а для самых устойчивых рыб и насекомых - около 50°С. Между этими крайними точками скорость реакций, контролируемых ферментами, а значит и интенсивность метаболизма удваиваются с повышением температуры на каждые 10°. Поэтому, несмотря на то, что, верхние предельные значения фактора часто оказываются более критическими, чем нижние, многие организмы вблизи верхних пределов диапазона толерантности функционируют более эффективно.

С точки зрения воздействия на живые организмы крайне важна изменчивость температуры. Жизнедеятельность организмов, которые в природе обычно подвергаются воздействию переменных температур, подавляется полностью или частично или замедляется под действием постоянной температуры.



Большинство организмов способно в той или иной степени контролировать температуру своего тела с помощью различных ответных реакций и адаптаций, которые могут смягчать воздействие экстремальных условий и внезапных изменений среды. В водной среде из-за высокой теплоемкости воды не происходит резких изменений температуры, так что в этом отношении условия здесь более стабильны, чем на суше и диапазон толерантности к температуре у водных организмов обычно более узок по сравнению с наземными животными.

Температура, как впрочем и интенсивность света, в большой мере зависит от географической широты, сезона, времени суток и экспозиции склона. Однако встречаются и узколокальные различия в температуре; это в особенности касается микроместообитаний, обладающих собственным микроклиматом. Растительность тоже оказывает некоторое влияние на температуру. Например, иная температура бывает под пологом леса или в меньшей степени внутри отдельных групп растений, а также под листьями отдельного растения.

Таким образом, температура является важным и часто лимитирующим фактором. Температурные ритмы в значительной степени контролируют сезонную и суточную активность растений и животных. Температура часто создает зональность и стратификацию в водных и наземных местообитаниях.

Излучение: свет представляет собой электромагнитные волны различной длины. Свет необходим для жизни, так как это источник энергии для фотосинтеза, однако есть и другие аспекты его воздействия на живые организмы. Рассматривая эти аспекты, необходимо помнить, что интенсивность света, его качество (длина волны, или цвет) и продолжительность освещения (фотопериод) могут оказывать различное влияние.



Земная атмосфера, включая озоновый слой, селективно, т.е. избирательно по частотным диапазонам, поглощает энергию электромагнитного излучения Солнца и до поверхности Земли доходит в основном излучение с длиной волны от 300 до 10000 нм. Более длинно- и коротковолновое излучение поглощается атмосферой. С увеличением зенитного расстояния Солнца возрастает относительное содержание инфракрасного излучения (от 50 до 72%).

Спектр электромагнитного излучения Солнца весьма широк и его частотные диапазоны различным образом воздействуют на живое вещество. Не известно, имеют ли экологическое значение длинные радиоволны, хотя по мнению некоторых исследователей, эти волны имеют определенное значение для перелетных птиц и других организмов. Роль ультрафиолетового ( с длинами волн менее 390 нм ), видимого ( диапазон волн от 390до 760 нм ) и инфракрасного (с длинами волн больше 760 нм) излучения частично была рассмотрена в разделе “Энергия в экосистемах”.

Интенсивность фотосинтеза несколько варьирует с изменением длины волны света. В наземных экосистемах качественные характеристики солнечного света не настолько изменчивы, чтобы это сильно влияло на интенсивность фотосинтеза, но при прохождении света через воду красная и синяя части спектра отфильтровываются и получающийся зеленоватый свет слабо поглощается хлорофиллом. Однако красные водоросли имеют дополнительные пигменты (фикоэритрины), позволяющие им использовать эту энергию и жить на большей глубине, чем смогли бы зеленые водоросли.

На интенсивность света влияет угол падения солнечных лучей на земную поверхность; она изменяется в зависимости от широты, сезона, времени дня и экспозиции склона. Интенсивность света, падающего на автотрофный ярус, управляет всей экосистемой, влияя на первичную продуктивность. И у наземных, и у водных растений фотосинтез связан с интенсивностью света линейной зависимостью до оптимального уровня светового насыщения, за которым во многих случаях следует снижение интенсивности фотосинтеза при высоких интенсивностях прямого солнечного света. Подавление фотосинтеза объясняется фотоокислением ферментов, что ослабляет синтез, главным образом, синтез белка и увеличивает долю углеводов в продукте; а активное дыхание ведет к расходованию продукта фотосинтеза. У некоторых растений, например, у эвкалипта, фотосинтез не ингибируется прямым солнечным светом. В данном случае происходит компенсация факторов, так как отдельные растения и целые сообщества приспосабливаются к различным интенсивностям света, становясь адаптированными к тени (диатомовые, фитопланктон) или адаптированными к прямому солнечному свету (хлебные злаки).



Продолжительность светового дня (фотопериод), относительно постоянная на экваторе (около 12 ч), в более высоких широтах изменяется в зависимости от времени года. Для растений и животных таких широт характерна реакция на фотопериод, которая синхронизирует их активность с временами года. Фотопериод выступает своеобразным “реле времени” или пусковым механизмом, включающим последовательность физиологических процессов, приводящих к росту, цветению многих растений, линьке и накоплению жира, миграции и размножению у птиц и млекопитающих и к наступлению диапаузы у насекомых.

Необходимость света для растений существенно влияет на структуру сообществ. Распространение водных растений ограничено поверхностными слоями воды. В наземных экосистемах в процессе конкуренции за свет у растений выработались определенные стратегии, например, быстрый рост в высоту, использование других растений в качестве опоры (у лиан), увеличение поверхности листьев. В лесах это приводит к ярусной структуре сообщества.

Вода физиологически необходима для любой протоплазмы. С экологической точки зрения она служит лимитирующим фактором как в наземных местообитаниях, так и в водных, где ее количество подвержено сильным колебаниям, или там, где высокая соленость способствует потере воды организмом через осмос. Все живые организмы, в зависимости от потребности их в воде, а следовательно, и по различиям местообитаний, подразделяются на ряд экологических групп: водные или гидрофильные, постоянно живущие в воде; гигрофильные, живущие в очень влажных местообитаниях; мезофильные, отличающиеся умеренной потребностью в воде, и ксерофильные, живущие в сухих местообитаниях. Количество осадков и влажность - основные величины, измеряемые при изучении этого фактора.

Количество осадков зависит в основном от путей и характера больших перемещений воздушных масс. Например, ветры, дующие с океана, оставляют большую часть влаги на обращенных к океану склонах, в результате чего за горами остается “дождевая тень”, способствующая формированию пустыни. Двигаясь вглубь суши, воздух аккумулирует некоторое количество влаги, и количество осадков опять увеличивается. Пустыни, как правило, расположены за высокими горными хребтами или вдоль тех берегов, где ветры дуют из обширных внутренних сухих районов, а не с океана, например, пустыня Намиб в Юго-Западной Африке. Распределение осадков по временам года - крайне важный лимитирующий фактор для организмов. Условия, создающиеся в результате равномерного распределения осадков, совершенно иные, чем при выпадении осадков в течение одного сезона. В этом случае животным и растениям приходится переносить периоды длительной засухи. Как правило, неравномерное распределение осадков по временам года встречается в тропиках и субтропиках, где нередко хорошо выражены влажный и сухой сезоны. В тропическом поясе сезонный ритм влажности регулирует сезонную активность организмов аналогично сезонному ритму тепла и света в условиях умеренного пояса. В умеренных климатах осадки обычно распределены по сезонам более равномерно (хотя существует много исключений). В таблице 4 приблизительно указаны типы климаксных биотических сообществ, которые можно ожидать при разном годовом количестве осадков, равномерно распределенном по временам года, в умеренных широтах.

Таблица 4


Просмотров 1209

Эта страница нарушает авторские права





allrefrs.ru - 2022 год. Все права принадлежат их авторам!