Главная Обратная связь Поможем написать вашу работу!

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Типы фотосинтеза и организмов-продуцентов



С химической точки зрения процесс фотосинтеза включает запасание части энергии солнечного света в виде потенциальной энергии пищи. Общее уравнение окислительно-восстановительной реакции можно записать следующим образом:

СО2 +2 H2A « {СН2O} + H2О +2A

окисление описывается уравнением:

H2A - 2e- ® 2H+ +A;

а восстановление :

СО2 +4H+ + 4e- ® {СН2O}+ H2О.

Для зеленых растений (водорослей, высших растений) А - это кислород; вода окисляется с высвобождением газообразного кислорода, а диоксид углерода восстанавливается до углеводов ({СН2O}) с высвобождением воды. Такой тип фотосинтеза носит название "нормального фотосинтеза".

При бактериальном фотосинтезе, напротив, H2A - восстановитель - не вода, а либо неорганическое соединение серы, например сероводород H2S, как у зеленых и пурпурных серобактерий, либо органическое соединение, как у пурпурных и бурых несерных бактерий. Соответственно при бактериальном фотосинтезе этих типов кислород не выделяется.

Фотосинтезирующие бактерии в основном водные морские и пресноводные организмы; в большинстве случаев они играют незначительную роль в продукции органического вещества. Но они способны функционировать в условиях, в общем неблагоприятных для большинства зеленых растений, и в водных отложениях участвуют в круговороте некоторых элементов. Бактериальный фотосинтез может быть полезен в загрязненных и эвтрофных (кормных) водах, восстановленных зонах с ограниченным доступом света, в стоячих озерах, богатых сероводородом, где на его долю может приходиться до 30% общей продукции.

Установлено, что у высших растений существуют разные биохимические механизмы восстановления диоксида углерода до углеводов, сопровождающегося выделением кислорода. У большинства растений фиксация диоксида углерода идет по С3- пентозофосфатному пути, или циклу Кальвина. Иной путь - по циклу С4 - дикарбоновых кислот. При обсуждении экологических последствий этих особенностей растения в соответствии с характером протекающих у них процессов фотосинтеза называют С3-растениями или С4-растениями. Эти растения по-разному реагируют на свет, температуру и воду. У первых максимальная интенсивность фотосинтеза (на единицу поверхности листа) обычно наблюдается при умеренных освещенности и температуре, а высокие температуры и яркий солнечный свет подавляют фотосинтез. Напротив, С4-растения адаптированы к яркому свету и высокой температуре и в таких условиях значительно превосходят по продуктивности С3-растения. Кроме того, они более эффективно используют воду: как правило, на производство 1 г сухого вещества им требуется менее 400 г воды, а С3- -растениям - от 400 до 1000 г воды. К тому же фотосинтез у С4-растений не ингибируется высокими концентрациями кислорода, как это происходит у С3-видов. Одна из причин того, что С4-растения более эффективны у верхних пределов световой и температурной шкал, состоит в том, что у них невелико фотодыхание, т.е. при увеличении освещенности продукты фотосинтеза не тратятся на дыхание.



Хотя в пересчете на площадь листвы эффективность фотосинтеза у С3-растений ниже, эти растения создают большую часть фотосинтетической продукции мира, возможно потому, что они более конкурентноспособны в смешанных сообществах, где растения затеняют друг друга и где освещенность, температура и другие показатели ближе к средним значениям, чем к предельным. Это еще один хороший пример принципа эмерджентности. Выживание наиболее приспособленных в реальном мире - не всегда выживание видов, физиологически более эффективных в оптимальных условиях в монокультуре; чаще выживают виды, преуспевающие в смешанной культуре в изменчивых и не всегда оптимальных условиях. Иными словами, то, что эффективно в изоляции, не обязательно эффективно в сообществе, где на естественный отбор сильно влияют межвидовые взаимодействия.



Как и следовало ожидать, С4- виды преобладают среди растительности пустынь и степей в теплом и тропическом климате и редки в лесах и на севере, где освещенность и температура низкие.

Недавно был открыт еще один способ фотосинтеза, приспособленный к условиям пустынь и получивший название САМ - метаболизм (кислотный метаболизм толстенковых). У некоторых жителей пустыни, в том числе кактусов, устьица на протяжении жаркого дня закрыты и открываются только прохладной ночью. Диоксид углерода, поглощаемый через устьица, накапливается в форме органических кислот и фиксируется в углеводах только на следующий день. Такая задержка фотосинтеза значительно уменьшает дневные потери воды, усиливая этим способность растений сохранять водный баланс и запасы воды.

Микроорганизмы, которых называют хемосинтезирующими бактериями, относят к хемолитотрофам, потому что они получают энергию для включения диоксида углерода в состав компонентов клетки не за счет фотосинтеза, а в результате химического окисления простых неорганических соединений, например аммиака (в нитрит), нитрита (в нитрат), сульфида (в серу), двухвалентного железа (в трехвалентное). Такие микроорганизмы могут расти в темноте, но большинству из них нужен кислород. В качестве примера можно привести различные азотные бактерии, играющие важную роль в круговороте азота. Благодаря способности функционирования в отсутствие света - в осадках, почве и на дне океанов- хемосинтезирующие бактерии не только играют роль в извлечении минеральных питательных веществ, они используют энергию, которая иначе была бы недоступна консументам.



Большинство высших (семенных) растений и многие виды водорослей используют только простые неорганические вещества и, следовательно, являются полностью автотрофными. Но некоторые водоросли нуждаются в каком-то одном (определенном) сложном органическом "ростовом веществе", которое они сами не способны синтезировать. Другие виды нуждаются в двух, трех или многих таких "ростовых веществах" и, следовательно, являются частично гетеротрофными; организмы, занимающие промежуточное положение между автотрофами и гетеротрофами, называются ауксотрофными.

В глобальном масштабе эволюционно наиболее развитые формы жизни можно четко разделить на автотрофов и гетеротрофов, причем для выживания последних необходим газообразный кислород. Но многие виды и штаммы низших микроорганизмов - бактерий, грибов, низших водорослей и простейших - не столь специализированы, они приспособлены к промежуточному способу существования и могут с автотрофии переключаться на гетеротрофию, жить в присутствии и в отсутствии кислорода.


Просмотров 664

Эта страница нарушает авторские права





allrefrs.ru - 2022 год. Все права принадлежат их авторам!