Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Теорема о структуре общего решения ЛОДУ (док). Понятие ФСР



Опр: Система n линейно-независимого решения ЛОДУ n-го порядка называется ФСР

Теорема о структуре общего решения ЛОДУ

Если функции y1(х), y2(х), … ,yn(х) – образует ФСР ЛОДУ у(n) + P1y(n-1) +…+ Pn-1 y’ + Pn y = 0 , то y(х) = C1y1(x) + C2y2(x) + … + Cnyn(x) = , есть общее решение этого уровня. (4).

Док-во:

Из теоремы о неравенстве нулю вронскиана линейно-независимых решений ЛОДУ:

Если n решений y1, y2, … ,yn ЛОДУ (2) и они линейно-независимы, на интервале (а,b) то определитель Вронского не может обращаться в ноль (0) ни в одной точке х ‌| для любого Х из (а,b) .

ð что (4) являются решением у(n) + P1y(n-1) +…+ Pn-1 y’ + Pn y = 0

остается доказать, что можно подобрать const-ты то С1, С2, … Сn , таким образом что функция (4) удовлетворяет любой системе начальных условий [н.у.]

Задаем н.у. , при x0 (а,b) y(х0) = y0, y’(х0) = y0’, y(n-1) (x0) = y0(n-1) определяем C1,C2,…, Cn

Определение:

C1y1(x0) + C2y2(x0) + … + Cnyn(x0) = y0

C1y1’(x0) + C2y2’(x0) + … + Cnyn’(x0) = y0’ , где y1, y2, yn ФСР C1 C2 Cn const

………………………………………….. (5)

C1y1(n-1)(x0) + C2y2(n-1)(x0) + … + Cnyn(n-1) (x0) = y0(n-1)

Определителем этой системы является определитель Вронского

W[y1, y2, … ,yn] 0, C1,C2,…, Cn - определяется един-м образом

Построим = C1y1(x) + C2y2(x) + … + Cnyn(x) ,

согласно свойству (если y1) α1y1 + α2y2 + …+ αnyn = 0 причем хотя бы одно hi 0.

- является решением ДУ(2) = y(x) , т.к. система (5) определена теми же н.у., что и y(x) ч.т.д.

Следствие:

1) максимальное число линейно-независимых решение ЛОДУ, коэффициенты непрерывны на (a,b) равно порядку этого уравнения.

2) независимо от н.у. все другие решения таких уравнений ЛОДУ является линейной комбинацией этих независимых решений (решений ФС)

3) Пространство решений ЛОДУ n-го порядка имеет базис из n-векторов, т.е. пространство n-мерное.

4) Для решения ЛОДУ n-го порядка необходимо найти ФСР. Общее решение получается как линейная комбинация решений ФС.


11. Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентами. Вид частных решений, характеристическое уравнение(×)

ЛОДУ с постоянными коэффициентами

у(n) + P1y(n-1) +…+ Pn-1 y’ + Pn y = 0, где все Pi (i= )= const

будем искать частное решение y=ekx , к – неизвестная постоянная

y’=kekx

y’’=k2ekx

……

y(n)=k(n) ekx

 

k(n) ekx + P1k(n-1) ekx + … + Pnekx = ekx(k(n) + P1k(n-1) + … + Pn) = 0

ekx 0 => k(n) + P1k(n-1) + … + Pn = 0, (1)

ð y=ekx - решение ДУ

(1) – характеристическое уравнение для ЛОДу с постоянными коэффициентами, выражения слева характеристический многочлен.

Решением характеристич уравнения (1) дает систему частных решений ЛОДу, структура ФСР зависит от вида корней характер уравнения.

(1) – алгебраическое уравнение n-ой степени, может иметь не более, чем n корней, обознач-м эти корни характеристического уравнения через k1 ,k2 …kn

Возможны случай

1)все корни хар-го уранения вещественны и различны

2)все корни различны, но среди них есть комплексные

3)среди действительных корней имеются кратные

4)среди комплексных корней есть кратные

Общий алгоритм решения ЛОДу с постоянным коэффициентом

1) составим характер уравнение : y=ekx , k(n) + P1k(n-1) + … + Pn = 0

2) найти корни характер уравнения k1 ,k2 …kn

3) по характеру корней находим частное линейно-независимое решение по таблице 1

4) подставляем частное решение на основе Теоремы о структуре общего решения ЛОДУ и получаем общее решение y =

Вид корня Соответственное решение
Действ корень кратности 1 ekx
Пара корней a bi;кратнос 1 eаxcosbx , eаxsinbx
Действит корень кратност α ekx, хekx, х2ekx, х3ekx,…, хα-1ekx
Пара сопряж корней α a bi eаxcosbx , eаxsinbx хeаxcosbx , хeаxsinbx х2eаxcosbx , х2eаxsinbx хα-1eаxcosbx , хα-1eаxsinbx

 


13. Линейные неоднородные дифференциальные уравнения n-го порядка. Теорема о структуре общего решения (док. для n=2). Теорема о суперпозиции решений (док. для n=2).

ЛНДУ

у(n) + P1y(n-1) +…+ Pn-1 y’ + Pn y = f(x) (1) Pi – непрерывна на отрезке (a,b)

Теорема о структуре общего решения ЛНДУ

Общее решение ЛНДУ есть сумма частного решения и общего решения соответственного ему однородного уравнения

Док-во:

Для уравнения 2-го порядка ( но теорема применима для уравнений любого порядка)

n=2

(1’) y” + P1(x) y’ + P2(x) y = f(x)

Обозначим у*(х) – частное решение ЛНДУ

(х) – общее решение ЛОДУ

Показать, что

(2) у= у*+ - общее решение ЛНДУ

Найдем:

Дважды дифференцируем функцию (2) и подставляем у, y’,y” в (1’)

у*”(x) + ”(x) + P1(x)[ у*(x)+ ’(x)] + P2(x)[ у*(x)+ (x)] =

= [у*”(x)+ P1(x) у*’(x)+ P2(x) у*(x)] + [ ”(x) + P1(x) ’ (x)+ P2(x) (x)] = f(x) + 0 = 0

= C1y1(x) + C2y2(x), y1,y2 – частное решение ЛОДУ y” + P1y’ + P2 = 0

C1C2 – подбираем так, чтобы они удовлетворяли начальным условиям

y(x0)=y0 , y’(x0)=y0’, для любых х0 (а,в), и любых y0 ,y0

C1y1(x0) + C2y2(x0) + у*(x0) = y0

C1y’1(x0) + C2y’2(x0) + у*(x0) = y0

Линейная неоднородная система, определитель этой системы, определитель Вронского

W[y1, y2]≠0 =>система имеет единственное решение при любых 0 , 0 ,y*0 ,y*’0 , это означает у= у*+ - общее решение ЛНДУ

Теорема2 принцип суперпозиции (принцип сложения решений)

Если функция yi(x) является решением ЛНДУ

(3) y(n) + P1y(n-1) + … + Pny = fi(x) то функция = α1y1 + α2y2 + … + αnyn , то это функция является решением y(n) + P1y(n-1) + … + Pny = α1 f1(x) + α2 f2(x) + … + αn fn(x) (4)

Док-во: для n=2

Подставим y, y’, y”, в (4) , учитываем что y1 y2 решение соответственного уравнения (3)

α1y1” + α2y2” + P1(x)[ α1y1+ α2y2] =

= [α1y1” + P1(x)α1y’1 + P2(x)α1y1] + [α2y2” + P1(x)α2y’2 + P2(x)α2y2] = α1f1(x) + α2f2(x)


14. Линейные неоднородные дифференциальные уравнения n-го порядка с постоянными коэффициентами. Метод неопределенных коэффициентов для уравнений со специальной правой частью. Метод вариации произвольных постоянных (вывод рабочей формулы).

Рассмотрим ЛНДУ с постоянными коэф-ми.

Ур-е у(n) + P1y(n-1) +…+ Pn-1 y’ + Pn y = f(x) : Pi=const

Метод неопр-х коэф-в можно применять если правое ур-е имеет следующий вид: f(x)= , , -многочлены степени g и r соотв-но a и b некоторые числа. В основе метода неопр-х коэф-в лежит знание формы частного решения, а именно частное решение стоит искать в аналогич-ой форме свободного члена.

Вид правой части (f(x)) Корни харак-го уравнения Вид частного решения y*
P (x)=A x +A x +… +A x+ A а) число 0 не явл-ся корнем хар-го ур-я б) число 0 явл-ся корнем хар-го ур-я кратности а) y*=b x +b x +…+ +b б) y*=x (B x +B x +… +B )
P (x)e = e ( A x + +A x +…+A x+ A ) p-действ-е число а) число p не явл-ся корнем хар-го ур-я б) число p явл-ся корнем хар-го ур-я кратности a) y*= e ( b x +b x +…+ +b ) б) y*= e x ( b x +b x +…+ +b )
P (x)cosgx+Q (x)singx g-число а) число gi-не явл-ся корнем хар-го ур-я б) число gi-явл-ся корнем хар-го ур-я кратности а) y*= (x)cosgx+ (x)singx б) y*=x ( (x)cosgx+ (x)singx)
P (x)e cosgx+ Q (x)e singx а) число gi-не явл-ся корнем хар-го ур-я б) число gi-явл-ся корнем хар-го ур-я кратности а) y*= (x) e cosgx+ (x)singx б) y*= x ( (x) e cosgx+ + (x)singx)

 

Замечание к таблице: 1)степени многоч-ов P и Q в случаях (3) и (4) можно считать одинаковыми, если они различны, то коэф-ты при недостающих степенях одного из многоч-ов можно считать=0.

2)правая часть ур-я может содержать несколько слагаемых; в этом случае сост-ся из неск-ких слагаемых в соотв-ии с Теоремой о неравенстве нулю вронскиана линейно-независимых решений ЛОДУ

 

Метод вариации производных постоянных(метод Лагранджа).

Метод позволяет найти решение ДУ независимо от вида правой части, когда известно общее решение соотв-го однородного ДУ.

Например: ДУ 2-го порядка. Пусть y”+P (x)y’+P (x)y=f(x) (1) пусть y (x) и y (x)-ФСРЛОДУ

y”+P (x)y’+P (x)y=0 (x)= C y (x)+C y (x) (2). Частное решение y*(x) в виде (14) считая при этом C и C не постоянными, а неизв-ми функциями от x.

y*= C (x)y (x)+C (x)y (x), y*= C’ (x)y (x)+C(x) y’ (x)+C’ (x)y (x)+ C(x) y’ (x)

Пусть C (x) и C (x) C’ (x)y (x)+ C’ (x)y (x)=0 /справедливое равенство (3), тогда y* ’= C (x)y’ (x)+ C (x)y’ (x); y* ”= C (x)y’ (x)+ C (x)y” (x)+ C’ (x)y’ (x)+ C (x)y” (x).

Подставим y*, y* ’, y* ” в (1): C (x)[ y” (x) + P (x)y ’(x) + P (x) y (x)] + C (x)[ y” (x) + P (x)y ’(x) + P (x) y (x)] + C’ (x)y’ (x)+ C’ (x)y’ (x)=f(x). Т.к. y (x), y (x) решения ОДУ, то выражения []=0 C’ (x)y’ (x) + C’ (x)y’ (x)=0.

Объясним два условия и (3):

 
 


C’ (x)y (x)+ C’ (x)y (x)=0

C’ (x)y’ (x)+ C’ (x)y’ (x)=f(x) (4)

 

Неопр-е ф-ии C’ (x) и C’ (x).

Определитель этой системы: W[y , y ]= 0 решая систему мы получим C (x)= (x),

C (x)= (x) проинтегрируем и получим решение C (x) и C (x) найдены. Подставим в y*.

Для ЛНДУ n-го порядка ф-ии C (x) определяются из системы:


C’ (x)y + C’ (x)y +…+ C’ (x)y =0

C’ (x)y’ + C’ (x)y’ +…+ C’ (x)y’ =0

……………………………………………

C’ (x)y + C’ (x)y +…+ C’ (x)y =0

C’ (x)y + C’ (x)y +…+ C’ (x)y =f(x)

 

Алгоритм решения ЛНДУ

1) найти ФСР однородного уравнения и записать его общее решение (ОУ)

2) записать частное решение неоднородного ДУ в форме общего решения ОУ считая Ci=Ci (x)

3) построить систему для определения Ci ‘(x) – решить ее

4) найти Ci (x) и подставить их в общее решение НДУ

 

 



Просмотров 2627

Эта страница нарушает авторские права




allrefrs.ru - 2023 год. Все права принадлежат их авторам!