Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Временные уравнения состояния и критерии длительной прочности



Вязкие (или реологические) свойства твердых тел устанавливаются главным образом по данным опытов на ползучесть. Ползучестьюназывается накапливание деформации во времени при постоянном напряжении.

 

Рис. 22. Общий вид кривой ползучести

На рис. 22 показана типичная кривая ползучести при фиксированном эффективном напряжении сжатия (или растяжения) и определенных внешних условиях (температура, давление, влажность). На этой кривой выделяют условно три стадии ползучести:

АВ – неустановившаяся, она характеризуется уменьшением скорости деформации;

ВС – установившаяся, скорость постоянная;

СД – прогрессирующая, скорость деформации растет вплоть до момента разрушения.

Деформация образца на первом участке сопровождается структурными изменениями, которые затрудняют ползучесть, происходит упрочнение. Выход на участок ВС означает, что материал исчерпал способность упрочняться, и вследствие этого уменьшилась скорость деформации. Ускоренная ползучесть на участке СД объясняется зарождением и развитием трещин. Участок вертикальной оси 0А соответствует мгновенной деформации , коротая в зависимости от уровня напряжения может быть либо упругой, либо содержать мгновенную пластическую деформацию. В любой момент времени полную накопленную деформацию можно определить в виде суммы , где - деформация ползучести.

 

Рис. 23. Серия кривых ползучестиРис. 24. Семейство изохронных

кривых ползучести

 

1. Теория старения.Для описания участков кривой ползучести используются различные теории (гипотезы). Так, для описания первых двух участков кривой чаще других используется теория старения, согласно которой полная деформация является функцией напряжения и времени при фиксированных внешний условиях (давление, температура, влажность и т.д.), т.е. . Эта функция задается серией кривых ползучести, которые затем перестраиваются в изохронные кривые в координатах . Техника подобной перестройки очевидна. Проведем вертикальную прямую, соответствующую . Точки пересечения этой прямой с кривыми ползучести определяют пары значений и . Построив их в соответствующей системе координат, получим кривую для момента времени . Подобным образом строятся кривые для других моментов времени. Эту серию кривых называют семейством изохронных кривых. Кривая мгновенного деформирования (t = 0) также является изохронной.

Экспериментально установлено, что совокупность изохронных кривых можно описать с помощью следующей эмпирической формулы



, (2.83)

где - параметры ползучести.

Для вязкопластичного тела функция нелинейная, определяется согласно (2.68). Для вязкоупругого тела , и с учетом (2.83) деформацию вычисляют по формуле

. (2.84)

 

Рис. 25. К определению параметров ползучести

а – деформационная кривая; б – исходная кривая по ползучести; в – преобразованная кривая по текучести

Чтобы определить параметры ползучести, достаточно располагать кривой мгновенного деформирования (рис. 25, а) или хотя бы одной кривой ползучести (рис. 25, б). Измерив на кривой ползучести ординаты , соответствующие моментам времени при , откладываем их по оси абсцисс на диаграмме мгновенного деформирования; полученные ординаты обозначаем через . Теперь построим новый график (рис. 25, в). По оси абсцисс отложим , по оси ординат - . Из соотношения (2.83) должно выполняться равенство

.

Откуда - величина отрезка, отсекаемого построенной прямой на оси ординат, а - ее угловой коэффициент. Естественно, более точные результаты получатся, если использовать несколько кривых ползучести.

Характерно, что параметр близок к 0,3 для различных горных пород.

По теории старения для описания сложного напряженного состояния

пользуются теми же уравнениями обобщенного закона Гука [см формулу (2.73)], в которых надо модули упругости G и пластичности заменить функциями времени и соответственно.

Ниже приведены средние значения параметров и для некоторых горных пород при времени, заданном в с.

Таблица № 7

коэффициенты
Песчаник 0,0046 0,283
Известняк 0,0067 0,299
Глина кембрийская 0,01 0,2
Аргеллит 0,0158 0,279
Алевролит 0,0368 0,285
Галит 0,085 0,2
Каменная соль 0,15 0,246

 



Благодаря простоте и удобству, теория старения нашла широкое применение в практике инженерных расчетов. Но в силу того, что эта теория исходит из опытов на ползучесть при постоянных нагрузках, ею можно пользоваться только в условиях постоянства напряженного состояния или медленного монотонного его изменения.

Для общего случая действия нагрузки на твердое тело используют уравнения состояния хорошо разработанной теории наследственной ползучести.

 

 


Эта страница нарушает авторские права

allrefrs.ru - 2019 год. Все права принадлежат их авторам!