Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Плоская фильтрация в вертикально-трещиноватом пласте



Если пласт содержит упорядоченную систему трещин, то в нем благодаря анизотропии проницаемости плоско-радиальный характер фильтрации не будет иметь место (см. разд. 2).

Рассмотрим случай, когда одно из главных направлений анизотропии Ox3 совпадает с направлением оси скважины Oz (например, упорядоченная система вертикальных трещин в вертикальной скважине). Тогда два других главных направления анизотропии Ох1 и Ох2 расположены в плоскости , т. е. параллельно кровле и подошве пласта. При заданных однородных граничных условиях в скважине и на поверхности питания (3.55) фильтрация будет плоской, так как , но не радиальной. В плоскости х1х2 имеют место обобщенный закон Дарси [см. формулу (2.40)]

,  

и соответствующее ему уравнение неразрывности [см. формулу (2.42)]

. (3.74)

Как было сказано в разд. 2, введением новой системы координат

(3.75)

уравнение (3.74),заданное в анизотропной плоскости х1х2, преобразуется в уравнение Лапласа

. (3.76)


для изотропной плоскости , проницаемость которой

 


Принимая скважину в качестве источника (или стока) интенсивностью , получим, аналогично (3.62), поле давления

 

. (3.77)

где , – радиус контура питания в плоскости . Отсюда следует, что эквипотенциальной поверхностью являются: окружность в плоскости и эллипс в плоскости х1х2, где – полуоси эллипса.

Это означает, что контуром питания (где ) в анизотропном пласте может быть только эллипс

(3.78)

Согласно (3.59) этому эллипсу в плоскости соответствует окружность . В то же время окружность преобразуется в эллипс

(3.79)

Поэтому в строгой постановке первая основная граничная задача формулируется так: найти решение уравнения (3.76), удовлетворяющее условию в точках эллипса (3.79) и условию на окружности .

Однако для определения расхода ‚ достаточно хорошее приближение получается, если эллипс (3.79) заменить эквивалентной окружностью радиуса

. (3.80)

Используя в (3.61) условие при получим

. (3.81)


Если истинный эллиптический контур питания (3.78) заменить условным – окружностью радиуса

(3.82)


то, выразив через и подставив полученное выражение и соотношение (3.80) в (3.81) придем к обычной формуле Дюпюи (3.65), в которой , а приведенный радиус скважины, приведенные коэффициенты гидропроводности и продуктивности надо принять равными:



 

(3.83)

где

. (3.84)

Отсюда следует, что при прочих равных условиях в анизотропном пласте расход жидкости выше, чем в изотропном пласте эквивалентной гидропроводности .

 

В нижеследующей таблице приведены значения при нескольких параметрах анизотропии и .

Таблица №2

102 103 104
1,03 1,05 1,15 1,21 1,50 2,05

Видно, что влияние анизотропии заметно при больших отношениях .

6. Определение расхода в неоднородном анизотропном пласте

Если после вскрытия пласта проницаемости и в приствольной зоне скважины изменились и стали равными и то возникает задача об определении расхода в неоднородном анизотропном пласте. Приближенное решение этой задачи может быть без труда найдено при следующих условиях:

главные направления проницаемостей в приствольной зоне и удаленной части пласта совпадают;

границей раздела областями является эллипс

(3.85)

где – радиус границы раздела в преобразованной плоскости .

Обозначим давление на общей границе через и рассмотрим каждую из областей независимо друг от друга.

Так как подобным эллипсам (3.78) и (3.85) в плоскости соответствуют концентрические окружности и , то для удаленной части пласта имеем [см. формулу (3.81)]



, (3.86)


где –приведенная гидропроводность удаленной части пласта. Рассматривая приствольную зону скважины, замечаем, что здесь преобразование системы координат х1х2 в осуществляется с помощью другого параметра анизотропии ,т. е.

 


Следовательно, границы этой области: эллипс (3.69) и окружность преобразуются в эллипсы с соответствующими полуосями

 

Заменив эти эллипсы эквивалентными окружностями, радиусы которых равны

(3.87)

получим приближенную формулу для расхода жидкости

, (3.88)


где – приведенная гидропроводность призабойной части пласта.

Определив из равенства правых частей (3.86) и (3.88), после преобразования получим следующую обобщенную формулу Дюпюи:

, (3.89)

где

.  

Видно, что при и имеем , т. е. влияние анизотропии исчезает, если призабойная зона скважины в результате кольматации приобрела свойства изотропной среды. Аналогичный результат имеет место при и , что возможно, например, при гидроразрыве изотропного пласта. Отсюда следует вывод гидроразрыв гранулярного коллектора в ПЗ не может привести к заметному росту продуктивности скважины. Его положительная роль сводится к разрушению зоны кольматации и тем самым восстановлению потенциальной продуктивности пласта. Только при гидроразрыве анизотропного пласта, когда , продуктивность скважины может быть увеличена.


Эта страница нарушает авторские права

allrefrs.ru - 2019 год. Все права принадлежат их авторам!