Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Особенности структуры матричной РНК



Наиболее многочисленным и гетерогенным по своим размерам является класс матричных РНК, что связано с функциями. Вы знаете, что этот класс отвечает за информационное обеспечение синтеза десятков тысяч различных белковых молекул присутствующих в каждой

На доли матричной РНК приходится 2-5% общего количества клеточного РНК. Необходимо отметить, что матричная РНК является наиболее быстро обменивающейся фракцией клеточной РНК. Большинство молекул РНК имевт единый класс построения - общие черты

На 5'конце матричной РНК всегда присутствует небольшая последовательность содержащая минорные нуклеотиды получившая название - кеп.

За ней распологается лидерная последовательность или иначе 5'-нетранслируемая

последовательностью.

Далее располагается инициирующий кодон, далее зона трансляции, кроторыя заканчивается "нонсенс" кодовом (кодон терминации).

Далее идет зона З'-нетранслируемая последовательность. На З'конце большинства молекул матричных РНК имеется длинная последовательность, которая включает от 20 до 250 нуклеотидных остатков образованный адениловой кислотой - полиаденилатный блок. Его функция не выяснена, но считают, что это блок отвечает за стабильность матричной РНК в клетке.

Молекулы некоторых матричных РНК, например гистоновые матричные РНК полиаденилатного блока не имеют. Кеп.

I. Защищает матричные РНК от преждевременного расщепления клеточными рибонуклеазами.

2. Специфическое узнавание 5'-конца матричной РНК рибосомой.

 

Репликация ДНК.

Транскрипция - синтез РНК не только матричных. В ходе процесса репликации происходит удвоение молекулы ДНК, причем структура, образующаяся в ходе синтеза, 2 дочерних молекул ДНК представляют собой точную структуру исходной или материнской цепи ДНК. В каждой из идентичных дочерних молекул ДНК содержится тот же самый объем генетической информации, что и в материнской молекуле. Именно поэтому, при последующем делении клеток каждая из 2 новых клеток получает эквивалентный объем генетической информации. Несомненно это и обеспечивает стабильность клеток и вида в целом в раду поколений.

Принципиальная схема механизма репликации ДНК очень проста.

Молекула Днк состоит нз 2антипараллельных комплементарных дезоксирибополинуклеотидной цепей каждая из которых содержит весь набор генетической информации.

На первом этапе репликации происходит раскручивание двойной спирали ДНК и расхождение ее цепей.



На втором этапе репликации на каждой из материнских цепей синтезируется новая вторая дезоксирибополинуклеотидная цепь, причем порядок соединения мономериых единиц во вновь синтезируемой цепи определяется матрицей, т.е. материнской цепью (последовательностью нуклеотидов).

По завершению процесса синтеза имеется 2 молекулы ДНК, в каждой из которых одна цепь материнская, а вторая вновь синтезируемая - полуконсервативный: механизм репликации ДНК.

У РНК транскрипция имеет консервативный механизм биосинтеза.

Пластическим материалом для репликации служит дезоксинуклеозидтрифосфат. дезоксиАТФ, дузоксиГТФ, дезоксиЦТФ и дезоксиТГФ. Суммсфная реакция бисаинтеэа ДНК

матер цепь ДНК + дАТФ, дГТФ, дЦТФ, дТТФ --> дочерн мол ДНК + АМФ

Репликазный комплекс обеспечивает синтез дочерних молекул ДНК и представляет собой сложнейшую надмолекулярную структуру в состав которого входит несколько десятков различных белков, в том числе белков ферментов и белков необладаюшкх каталитической активностью.

Перед каждым делением в ядре клетки должно произойти удвоение ее хромосом, что и происходит в Ь фазу клеточного цикла.

Для удвоение хромосомы необходимо во-первых репликация всех имеющихся в ядре молекул ДНК

во-вторых синтез полного комплекта гистонов, а возможно и других ядерных белков, участвующих в структурной организации второго хромосомного набора.

Продолжительность распада клеточного цикла равняется 8 часам. Скорость роста цепи ДНК в ходе репликации составляет около 50 нуклеотидных остатков в секунду. Т.е. удвоение такой молекулы за счет одного репликазного комплекса занимало бы порядка 800 часов.

Детальное изучение процесса репликации показало, что в S фазе на каждой хромосоме одновременно работает до 80 репликазных комплексов, которые обеспечивают удвоение отдельных участков хромосом. Размеры этих участков автономной репликации так называемых репликонов составляет от 30 до 300 тыс. пар нуклеотидов, что, как выяснилось, в среднем является величиной одной петли хроматина. Отдельные репликационные единицы удваиваются в разные промежутки времени в течении S фазы.



В определенном участке хромосомы так называемый сайт инициации одновременно формируется 2 репликационных комплекса, которые движутся по молекуле ДНК в противоположных направлениях образуя 2 репликационные вилки.

На хромосоме формируется репликационный глазок.

Репликационные белки соседних репликационных глазков сталкиваются и при их слиянии освобождаются удвоенные участки хромосомы ДНК. Важно отмелить, что репликациотый глазок образуется только в местах молекулы, где находится специфичнее нукпеотадные последовательности Эти последовательности получили название - точки начала репликации.

Сайтами инициации служат участки петель хроматина с помощью которых эти петли гпжкрегаиются к осевой нити хромосомы. К сайтам и инциации репликации прикрепляются специальные инициаторные белки с помощью которых и формируется 2 репликаэных комплекса. Ферментом непосредственно, катализирующим синтез дочерних цепей ДНК является ДНК-полимераза.

В клетке имеется 3 ДНК полимеразы.

1 а-ДНК-полимераза принимает непосредственно участие в репликации хромосомной ДНК.

2 в-ДНК-полимераза участвует в процессах репорации поврежденной хромосомной ДНК. 3 у-ДНК-полимераза обеспечивает репликацию митохондриальной ДНК.

У а-ДНК-полимеразы выделяют 3 наиболее важных свойства

1 Способна обирать на основе указания матрицы из окружающей среды комплементарные дезоксинуклеозидтрифосфаты.

2 Катализирует образование фосфодиэфирной связи между 3' концом синтезируемой дочерней цепи ДНК и фосфатной группировкой очередного дезоксирибонулеотида.

3. Фермент способен контролировать правильность сборки дочерней молекулы ДНК.

Для работы а-ДНК-полимеразы необходимы 3 условия.

1 ДНК-полимераза способна присоединять новые нуклеотидные остатки к уже имеющемуся фрагменту дочерней цепи ДНК. Она не может синтез дочерней цепи с нуля.

2 Фермент может работать только на одноцепочечной матрице

3 Фермент способен синтезировать дочернюю цепь ДНК только в направлении 5'-3', причем работая при этом на антипараллельной матричной цепи. Реплицируемая молекула ДНК не удовлетворяет ни одному из и этих требований, поскольку она представляет

которых мог бы присоединиться и начать свою работу данный фермент. Все эти сложности разрешаются в ходе

работы репликазного комплекса.

Этот комплекс формируется с помощью инициаторных белков в зоне сайта инициации репликации. В состав этого комплекса входят ферменты и неферментные белки формирующие одноцепочные матрицы на которых может работать ДНК-полимераза.

 

Химический состав слюны.

На 97,5-99,5% состоит из воды, 0,5-2,5 приходится на сухой остаток около 2/3 которого составляют органические вещества и 1/3 минеральные. Общая концентрация минеральных составных частей в слюне ниже чем в плазме крови, т.е. слюнные железы выделяют гипотаническую жидкость. К минеральным компонентам относятся Са„ К, Na, Fe, Si, Al, Zn, Cr, Mn, Си и др. катионы, а так же анионы - хлориды, фосфаты, бикарбонаты, проданиды, йодиды, сульфаты, бромиды и фториды.

В смешанной слюне Mg Содержание магния с возрастом увеличивается.

При ношении металлических коронок в слюне обнаруживаются ионы серебра, титана, никеля, свинца и др. в виде хлоридов, бикарбонатов, фосфатов и сульфатов.

В слюне обнаружены родониды (тиоцнанаты)- продукты сульфирования цианидов. Количество роданидов увеличено у курильщиков. Принято считать, что слюна концентрирует роданиды.

1 Белки и низкомолекулярные вещества 2 Углеводы и продукты их неполного расщепления. 3 Липиды 4 Витамины 5 Гормноны

Основными органическими веществами слюны являются белки, отличающиеся по происхождению. 1 Часть синтезируемая в слюнных железах. Белки железистого происхождения 2 Сывороточного происхождения ЗМикробного происхождения 4 Лейкоцитарного происхождения

5. Изнарушенных эпителиальных клеток слизистой оболочки полости рта.

При электрофорезе на бумаге белки слюны разделяются на отдельные фракции

Лизоцин, Альбумины, а1,а2 ,в, у глобулины

При электрофорезе в полиакриламидном геле удалось получить 17 фракций белков слюны. В зависимости от аминокислотного состава кх условно подразделили на 4 группы.

1. Кислые (большое кол-во аспартата и гяутомата) 2. Основные (лизин, аргинин, гистидин) 3. Богатые тирозином 4 Богатые гастидином - гистатины.

Белки первой и второй группы участвуют в образовании приобретенной пелликулы на поверхности эмали.

Белки третей группы препятствуют росту кристаллов и слюны перенасыщенные Са и Р. Четвертая группа бе ов обладает антимикробным действием.

Главными группами белков слюны являются гликопротеины и муцины, а так же фосфопротеины. Более половины всего содержания белков слюны составляют муцины. Функции муцинов Все муцины смешанной слюны

1. Смазывают слизистые оболочки полости рта и поверхности зубов, а значит защищают их от различных повреждений.

2. Связывают Са слюны. 3. Участвуют в поддержании постоянства рН.

Слюна содержит так же видоспецифические антигены и антитела. По содержанию агглютинина в слюне можно

подбирать доноров с определенной группой крови. В слюне содержится Са-связывающий белок, который обладает

высоким сродством к гидроксиаппатиту.

1. Железистого Лейкоцитарного Микробного Клеточного.

К ферментам собственно железистого происхождения относится амилаза, некоторые аминотрансферазы, пероксидаза, ЛДГ, мальтаза, кислая и щелочная фосфотазы и др. Лейкоцитарное происхождение имеют следующие ферменты ротовой жидкости:

2. ЛДГ лизоцин хондроитинсульфатаза липаза Ферменты микробноо происхождения 1. Каталаза ЛДГ мальтаза хондроитинсульфатаза

Некоторые ферменты появляются в ротовой жидкости за счет нескольких источников сразу. По мнению ряда исследователей ферменты гиулоронидаза и калийкреин увеличивает проницаемость клеток эмали для Са и органических соединений, а слюна является одним го важнейших источников калийкреина.

В слюне обнаружен фермент суперокснддисмутаза, причем гооферментный набор этого фермента различается у людей различной национальности. Обнаружены так же фирониктин (адгезивный белок), обнаружены статерины, протромбин, антигепариновые вещества и другие факторы свертывающей и антисвертывающей системы крови. Количество и качественный состав белков крайне разнообразен. Небелковый азот слюны включает следующие вещества: Мочевина Мочевая кислота Аммиак Аминокислоты

В слюне в небольших количествах по сравнению с сывороткой крови присутствуют липиды. Холистерол и его эфиры, свободные ВЖК, глицеролипиды.

Углеводы слюны представлены олигосахаридами входящими в состав муцинов и др. гликопротеидов. Есть свободные гликозаминсгликаны. Свободные моносахариды и дисахариды. Их количество составляет 30 мг/100мл. В том числе здесь постоянно находится глюкоза, ее количество 1 мг/100мл.

В слюне так же содержатся так же продукты неполного расщепления глюкозы: лактат, пируват, ацетат, цитрат и др. органические кислоты. В слюне обнаружен целый ряд биологически активных веществ:

1 Витамины (С, В2, В1, ВЗ, В6, В5, В7, В9) 2Гормоны (котихоламины, кортизол, эстрагены, прогестерон, тестостерон, пароитинС) 3 Карийкреины 4 Циклические нуклеотиды.

 


Эта страница нарушает авторские права

allrefrs.ru - 2019 год. Все права принадлежат их авторам!