Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Признаки равномерной сходимости



Признак сравнения

Ряд сходится абсолютно и равномерно, если выполнены условия:

1. Ряд сходится равномерно.

2.

Частным случаем является признак Вейерштрасса, когда . Таким образом функциональный ряд ограничиваеся обычным. От него требуется обычная сходимость

Признак Дирихле

Ряд сходится равномерно, если выполнены следующие условия:

1. Последовательность действительнозначных функций монотонна и

2. Частичные суммы ряда равномерно ограничены.

Признак Абеля

Ряд сходится равномерно, если выполнены следующие условия:

1. Последовательность действительнозначных функций равномерно ограничена и монотонна .

2. Ряд равномерно сходится.

 

 

Свойства равномерно сходящихся последовательностей и рядов

Теоремы о непрерывности

Рассматриваются комплекснозначные функции на множестве

Последовательность непрерывных в точке функций сходится к функции непрерывной в этой точке.

Последовательность

функция непрерывна в точке

Тогда непрерывна в .

Ряд непрерывных в точке функций сходится к функции непрерывной в этой точке.

Ряд

функция непрерывна в точке

Тогда непрерывна в .

Теоремы об интегрировании

Рассматриваются действительнозначные функции на отрезке действительной оси.

Теорема о переходе к пределу под знаком интеграла.

функция непрерывна на отрезке

на

Тогда

Теорема о почленном интегрировании.

функция непрерывна на отрезке

на

Тогда

Теоремы о дифференцировании

Рассматриваются действительнозначные функции на отрезке действительной оси.

Теорема о дифференцировании под пределом.

функция непрерывно дифференцируема на отрезке

сходится

на отрезке

Тогда — непрерывно дифференцируема на , на

Теорема о почленном дифференцировании.

функция непрерывно дифференцируема на отрезке

сходится

равномерно сходится на отрезке

Тогда — непрерывно дифференцируема на , на


 

Вопрос 22

Степенные ряды, Теорема Абеля, Радиус сходимости, свойства степ. рядов

 

Определение

Ряд, членами которого являются степенные функции аргумента x, называется степенным рядом:

Часто рассматривается также ряд, расположенный по степеням (x − x0), то есть ряд вида

где x0 − действительное число.

Интервал и радиус сходимости

Рассмотрим функцию . Ее областью определения является множество тех значений x, при которых ряд сходится. Область определения такой функции называется интервалом сходимости.



Если интервал сходимости представляется в виде , где R > 0, то величина R называется радиусом сходимости. Сходимость ряда в конечных точках интервала проверяется отдельно.


Радиус сходимости можно вычислить, воспользовавшись радикальным признаком Коши, по формуле

или на основе признака Даламбера:

Сходимость степенных рядов

Из формального степенного ряда с вещественными или комплексными коэффициентами путем приписывания формальной переменной какого-нибудь значения в поле вещественных или комплексных чисел можно получить числовой ряд. Числовой ряд считается сходящимся (суммируемым), если сходится последовательность частичных сумм, составленных из его членов, и называется абсолютно сходящимся, если сходится последовательность частичных сумм, составленных из его членов, взятых по модулю (по норме).

Признаки сходимости

Для степенных рядов есть несколько теорем, описывающих условия и характер их сходимости.

Первая теорема Абеля: Пусть ряд сходится в точке . Тогда этот ряд сходится абсолютно в круге и равномерно по на любом компактном подмножестве этого круга.

Обращая эту теорему, получаем, что если степенной ряд расходится при , он расходится при всех , таких что . Из первой теоремы Абеля также следует, что существует такой радиус круга (возможно, нулевой или бесконечный), что при ряд сходится абсолютно (и равномерно по на компактных подмножествах круга ), а при — расходится. Это значение называется радиусом сходимости ряда, а круг — кругом сходимости.

Вторая теорема Абеля: Пусть степенной ряд сходится в точке . Тогда он сходится равномерно по на отрезке, соединяющем точки 0 и .



Формула Коши-Адамара: Значение радиуса сходимости степенного ряда может быть вычислено по формуле:

(По поводу определения верхнего предела см. статью «Частичный предел последовательности».)

Пусть и — два степенных ряда с радиусами сходимости и . Тогда

Если у ряда свободный член нулевой, тогда

Вопрос о сходимости ряда в точках границы круга сходимости достаточно сложен и общего ответа здесь нет. Вот некоторые из теорем о сходимости ряда в граничных точках круга сходимости:

Признак Д’Аламбера: Если при и выполнено неравенство

тогда степенной ряд сходится во всех точках окружности абсолютно и равномерно по .

Свойства степенных рядов
Отметим здесь, без доказательства, три важных свойства степенных рядов. 1.Сумма степенного ряда
(2)

является непрерывной функцией в каждой точке интервала сходимости .

2.Ряд

, (4)

полученный почленным дифференцированием ряда (2), является степенным рядом с тем же, что и ряд (2), интервалом сходимости . Сумма ряда (4) .

Замечание. Ряд (4) также можно почленно дифференцировать и сумма полученного после этого ряда равна , и так далее. Таким образом, сумма ряда (2) является бесконечно дифференцируемой функцией в интервале сходимости . Сумма ряда полученного из ряда (2) – кратным дифференцированием, равна . Область сходимости степенного ряда при дифференцировании не изменится.

3. Пусть числа и принадлежат интервалу сходимости ряда (2). Тогда имеет место равенство

(5)

 

Вопрос 23


Эта страница нарушает авторские права

allrefrs.ru - 2019 год. Все права принадлежат их авторам!