Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Проверка гипотез о параметрах распределения



ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ

 

 

Постановка задачи

В обычной речи слово «гипотеза» означает предположение. В статистике — это предположение о виде закона распределения («данная генеральная совокупность нормально распределена»), о значениях его параметров («генеральное среднее равно нулю»), об однородности данных («эти две выборки извлечены из одной генеральной совокупности»). Статистическая проверка гипотезы состоит в выяснении того, согласуются ли результаты наблюдений (выборочные данные) с нашим предположением.

Результатом такой проверки может быть отрицательный ответ: выборочные данные противоречат высказанной гипотезе, поэтому от нее следует отказаться. В противном случае мы получаем ответ неотрицательный: выборочные данные не противоречат гипотезе, поэтому её можно принять в качестве одного из допустимых решений (но не единственно верного).

Статистическая гипотеза, которая проверяется, называется основной (нулевой) и обозначается Гипотеза, которая противопоставляется основной, называется альтернативной (конкурирующей) и обозначается Цель статистической проверки гипотез: на основании выборочных данных принять решение о справедливости основной гипотезы или отклонить в ее пользу альтернативной.

Так как проверка осуществляется на основании выборки, а не всей генеральной совокупности, то существует вероятность, возможно, очень малая, ошибочного заключения.

Так, нулевая гипотеза может быть отвергнута, в то время как в действительности в генеральной совокупности она является справедливой. Такую ошибку называют ошибкой первого рода, а её вероятность — уровнем значимости и обозначают Возможно, что нулевая гипотеза принимается, в то время как в генеральной совокупности справедлива альтернативная гипотеза. Такую ошибку называют ошибкой второго рода, а её вероятность обозначают (табл. 6.1).

Таблица 6.1

Результаты проверки статистической гипотезы

 

Принятое решение В генеральной совокупности гипотеза
Верна Неверна
отвергнута Ошибка 1 рода Правильное решение
принята Правильное решение Ошибка 2 рода

 

Проверка статистических гипотез осуществляется с помощью статистического критерия. Статистический критерий K — это правило (функция от результатов наблюдений), определяющее меру расхождения результатов наблюдений с нулевой гипотезой. Вероятность называют мощностью критерия.



При проверке статистических гипотез принято задавать заранее уровень значимости (стандартные значения: 0.1, 0.05, 0.01, 0.001). Тогда из двух критериев, характеризующихся одной и той же вероятностью выбирают тот, которому соответствует меньшая ошибка 2-го рода, т.е. большая мощность. Уменьшить вероятности обеих ошибок и одновременно можно, увеличив объем выборки.

Значения критерия K разделяются на две части: область допустимых значений (область принятия гипотезы ) и критическую область (область принятия гипотезы ). Критическая область состоит из тех же значений критерия К, которые маловероятны при справедливости гипотезы . Если значение критерия K, рассчитанное по выборочным данным, попадает в критическую область, то гипотеза отвергается в пользу альтернативной в противном случае мы утверждаем, что нет оснований отклонять гипотезу .

Пример. Для подготовки к зачету преподаватель сформулировал 100 вопросов (генеральная совокупность) и считает, что студенту можно поставить «зачтено», если тот знает 60 % вопросов (критерий). Преподаватель задает студенту 5 вопросов (выборка из генеральной совокупности) и ставит «зачтено», если правильных ответов не меньше трех. Гипотеза : «студент курс усвоил», а множество — область принятия этой гипотезы. Критической областью является множество — правильных ответов меньше трех, в этом случае основная гипотеза отвергается в пользу альтернативной «студент курс не усвоил, знает меньше 60 % вопросов».

Студент А выучил 70 вопросов из 100, но ответил правильно только на два из пяти, предложенных преподавателем, — зачет не сдан. В этом случае преподаватель совершает ошибку первого рода.

Студент Б выучил 50 вопросов из 100, но ему повезло, и он ответил правильно на 3 вопроса — зачет сдан, но совершена ошибка второго рода.



Преподаватель может уменьшить вероятность этих ошибок, увеличив количество задаваемых на зачете вопросов.

 

Чтобы построить критическую область, нужно знать закон распределения статистики K при условии, что гипотеза справедлива. Уровень значимости (вероятность наблюдаемому значению попасть в критическую область) определяет «размер» критической области, а конкурирующая гипотеза — «форму» критической области. Например, если проверяется гипотеза а в качестве альтернативы — то критическая область будет правосторонней (рис. 6.1, а). При альтернативе критическая область — левосторонняя (рис. 6.1, б). При альтернативе критическая область — двусторонняя (рис. 6.1, в). Во всех этих случаях при заданном уровне значимости заштрихованная площадь составляет % от всей площади под кривой плотности распределения статистики K.

 

Алгоритм проверки статистических гипотез сводится к следующему:

1) сформулировать основную и альтернативную гипотезы;

2) выбрать уровень значимости ;

3) в соответствии с видом гипотезы выбрать статистический критерий для ее проверки, т.е. случайную величину K, распределение которой известно;

4) по таблицам распределения случайной величины K найти границу критической области (вид критической области определить по виду альтернативной гипотезы );

5) по выборочным данным вычислить наблюдаемое значение критерия

6) принять статистическое решение: если попадает в критическую область — отклонить гипотезу в пользу альтернативной ; если попадает в область допустимых значений, то нет оснований отклонять основную гипотезу.

Проверка гипотез о параметрах распределения

 


Эта страница нарушает авторские права

allrefrs.ru - 2019 год. Все права принадлежат их авторам!