Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Разряд конденсатора на резистор



Рассмотрим переходный процесс при коротком замыкании в цепи с конденсатором и резистором (рис. 5.8), если предварительно конденсатор был заряжен до напряжения

uC(0+) = U0 = Е.


Рис. 5.8

Установившийся ток через конденсатор и установившееся напряжение на конденсаторе равны нулю. Для построения характеристического уравнения запишем по второму закону Кирхгофа уравнение для вновь образованного контура

R i + uC = 0.

При расчете переходных процессов в цепях с конденсатором часто удобнее отыскать сначала не ток, а напряжение на конденсаторе uC , а затем учитывая, что , найти ток через конденсатор. Поэтому запишем уравнение по второму закону Кирхгофа в виде:

.

Характеристическое уравнение имеет вид:

RCp + 1 = 0.

Общее решение для свободной составляющей напряжения:

uCсв = A ept = A e-t/τ,

где: А = U0 – постоянная интегрирования;
p = - 1 / (RC) – корень характеристического уравнения;
τ = RC – постоянная времени цепи.

С учетом нулевого значения установившегося напряжения получим напряжение на конденсаторе:

uC = U0 e-t/τ.

Переходный ток в цепи

.


Рис. 5.9

Кривые изменения напряжения на конденсаторе и тока в цепи во времени имеют вид экспонент (рис. 5.9).

С энергетической точки зрения переходный процесс характеризуется переходом энергии электрического поля конденсатора в тепловую энергию в резисторе. Следует отметить; что сопротивление резистора влияет не на количество выделенной теплоты, а на начальное значение тока и длительность разряда. В самом деле

.

Включение цепи с резистором и конденсатором на постоянное напряжение (заряд конденсатора)

Из схемы, приведенной на рис. 5.10, следует, что установившаяся составляющая напряжения на конденсаторе u = U, а свободная составляющая, очевидно, равна



Рис. 5.10

uCсв = A e-t/τ, τ = RC.

Полагаем, что до замыкания ключа конденсатор не был заряжен (Uс(0-) = 0). На основании законов коммутации uC(0-) = uC(0+) = 0, при t = 0; следовательно:

uC(0) = u(0) + uCсв(0) или 0 = U + A, откуда А = -U.

Тогда переходное напряжение на конденсаторе

uC = U (1 - e-t/τ),

а переходный ток в цепи

.

Зависимости напряжений и токов от времени показаны на рис. 5.10. Из них видно, что напряжение на конденсаторе возрастает по экспоненциальному закону от нуля до напряжения источника, а ток уменьшается от начального значения до нуля также по экспоненте. Длительность их изменения определяется постоянной времени τ = RC. Здесь как и в п. 5.5.1 время переходного процесса принимается равным t ≈ (3 ÷ 5)τ.

Переходный процесс включения последовательной цепи из резистора, катушки индуктивности и конденсатора на постоянное напряжение. Возможный характер переходного процесса.


Рис. 5.16

Рассмотрим электромагнитные процессы, возникающие после замыкания ключа в цепи, изображенной на рис. 5.16 в предположении, что конденсатор был предварительно не заряжен, т.е. uC(0-) = 0. Характеристическое уравнение и вид его корней будут такими же, как и в цепи, рассмотренной в п. 5.6.

Апериодический процесс

Между разрядом конденсатора на резистор с катушкой и включением на постоянное напряжение контура (см. рис. 5.16) существует аналогия. Так же, как при разряде конденсатора, установившаяся составляющая тока равна нулю. Установившееся напряжение на конденсаторе u = U. Следовательно, начальное значение свободной составляющей напряжения на конденсаторе


Рис. 5.17

uCсв(0+) = uC(0+) - u(0-)

равно uCсв(0+) = -U. То есть знаки постоянных интегрирования А1 и А2 в отличие от рассмотренного в п. 5.6 случая изменяются на противоположные. В этом случае переходное напряжение на конденсаторе, ток и напряжение на катушке определяются по формулам:

;
; .

Кривые uC(t), uL(t) и i(t) приведены на рис. 5.17.

Колебательный процесс

Включение рассматриваемого контура на постоянное напряжение может сопровождаться колебательным переходным процессом. При этом в отличие от процесса разряда конденсатора (см. п. 5.6) знак начального значения преходящего напряжения, следовательно, и коэффициента А, изменится на противоположный. Переходные напряжения и ток приобретут вид:


Рис. 5.18

;
;
.

Кривые uC(t) и i(t) показаны на рис. 5.18. Кривая тока отображает затухающие колебания относительно нулевого значения, а напряжения на конденсаторе – относительно установившегося значения. Следует отметить, что за время переходного процесса контура часть энергии источника переходит в тепло, а другая часть запасается в электрическом поле конденсатора в виде:


т.е. .

 

76?

77 Операторный метод расчёта переходных процессов. Замена функции времени её изображением. Упрощения, которые при этом достигаются. Соответствия между оригиналами и изображениями для наиболее распространённых функций


Просмотров 1697

Эта страница нарушает авторские права



allrefrs.ru - 2023 год. Все права принадлежат их авторам!