Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Переходные процессы. Общие сведения о переходных процессах. Законы коммутации в электрических цепях с накопителями энергии



 

При всех изменениях в электрической цепи: включении, выключении, коротком замыкании, колебаниях величины какого-либо параметра и т.п. – в ней возникают переходные процессы, которые не могут протекать мгновенно, так как невозможно мгновенное изменение энергии, запасенной в электромагнитном поле цепи. Таким образом, переходный процесс обусловлен несоответствием величины запасенной энергии в магнитном поле катушки и электрическом поле конденсатора ее значению для нового состояния цепи.

При переходных процессах могут возникать большие перенапряжения, сверхтоки, электромагнитные колебания, которые могут нарушить работу устройства вплоть до выхода его из строя. С другой стороны, переходные процессы находят полезное практическое применение, например, в различного рода электронных генераторах. Все это обусловливает необходимость изучения методов анализа нестационарных режимов работы цепи.

Первый закон коммутации состоит в том, что ток в ветви с индуктивным элементом в начальный момент времени после коммутации имеет то же значение, какое он имел непосредственно перед коммутацией, а затем с этого значения он начинает плавно изменяться. Сказанное обычно записывают в виде iL(0-) = iL(0+), считая, что коммутация происходит мгновенно в момент t = 0.

Второй закон коммутации состоит в том, что напряжение на емкостном элементе в начальный момент после коммутации имеет то же значение, какое оно имело непосредственно перед коммутацией, а затем с этого значения оно начинает плавно изменяться: UC(0-) = UC(0+).

Следовательно, наличие ветви, содержащей индуктивность, в цепи, включаемой под напряжение, равносильно разрыву цепи в этом месте в момент коммутации, так как iL(0-) = iL(0+). Наличие в цепи, включаемой под напряжение, ветви, содержащей разряженный конденсатор, равносильно короткому замыканию в этом месте в момент коммутации, так как UC(0-) = UC(0+).

Однако в электрической цепи возможны скачки напряжений на индуктивностях и токов на емкостях.

В электрических цепях с резистивными элементами энергия электромагнитного поля не запасается, вследствие чего в них переходные процессы не возникают, т.е. в таких цепях стационарные режимы устанавливаются мгновенно, скачком.

В действительности любой элемент цепи обладает каким-то сопротивлением r, индуктивностью L и емкостью С, т.е. в реальных электротехнических устройствах существуют тепловые потери, обусловленные прохождением тока и наличием сопротивления r, а также магнитные и электрические поля.

Переходные процессы в реальных электротехнических устройствах можно ускорять или замедлять путем подбора соответствующих параметров элементов цепей, а также за счет применения специальных устройств.

 

2. 73 Переходный процесс включения катушки индуктивности на постоянное напряжение. Принуждённая и свободная составляющая тока в переходном процессе. Величины, определяемые из начальных условий переходного процесса. Постоянная времени.

3. Переходный процесс при заряде и разряде конденсатора в ёмкостно-резистивной цепи постоянного тока. Постоянная времени ёмкостно-резистивной цепи постоянного тока.


Рис. 5.4

Переходный ток в цепи, изображенной на рис. 5.4, представим в виде

i = iу + iсв.

1. До коммутации тока в катушке не было, следовательно,

iL(0-) = 0.

2. Установившаяся составляющая тока после коммутации

iу = U / R.

3. Свободная составляющая тока для цепи, описываемой дифференциальным уравнением первого порядка

iсв = A e-t/τ =A ept , p = - R / L.

4. По начальным условиям определим постоянную интегрирования А и свободную составляющую тока:

i(0) = iу(0) + iсв(0); i(0) = iу(0+) + iсв(0-);

или

0 = U / R + A; A = -U / R; iсв = -U / R · e-t/τ.

Переходный ток получается в виде

i = U / R (1 - e-t/τ).


Рис. 5.5

Напряжение на катушке

.

Кривые изменения токов i, iy, iсв и напряжения на катушке uL показаны на рис. 5.5.

При включении рассматриваемого контура под постоянное напряжение ток в нем нарастает от нуля до установившегося значения. Скорость нарастания тока

изменяется по экспоненте с отрицательным показателем. В момент t = 0 эта скорость максимальна и равна U / L [А/с], со временем она падает практически до нуля, процесс выходит на установившийся режим.

В первый после коммутации момент t = 0+ ток в цепи еще равен нулю, и напряжение на катушке максимально uL = U, далее оно экспоненциально снижается до нуля.


Просмотров 1604

Эта страница нарушает авторские права



allrefrs.ru - 2023 год. Все права принадлежат их авторам!