Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Контактная разность потенциалов. Контакт двух металлов. Законы Вольта



 

Контактными называется ряд физических явлений, возникающих в области соприкосновения разнородных тел. Практический интерес контактные явления представляют в случае контакта металлов и полупроводников.

Объясним возникновение контактной разности потенциалов, воспользовавшись представлениями зонной теории. Рассмотрим контакт двух металлов с различными работами выхода Авых1 и Авых2. Зонные энергетические диаграммы обоих металлов приведены на рис. 2. У этих металлов также различны уровни Ферми (уровень Ферми или энергия Ферми (EF) – энергия, ниже которой все энергетические состояния заполнены, а выше – пусты при абсолютном нуле температуры). Если Авых1 < Авых2 (рис. 2), то в металле 1 уровень Ферми располагается выше, чем в металле 2. Следовательно, при контакте металлов электроны с более высоких уровней металла 1 будут переходить на более низкие уровни металла 2, что приведет к тому, что металл 1 зарядится положительно, а металл 2 — отрицательно.

 

 

Одновременно происходит относительное смещение энергетических уровней: в металле, заряжающемся положительно, все уровни смещаются вниз, а в металле, заряжающемся отрицательно, — вверх. Этот процесс будет происходить до тех пор, пока между соприкасающимися металлами не установится термодинамическое равновесие, которое, как доказывается в статистической физике, характеризуется выравниванием уровней Ферми в обоих металлах (рис. 3). Поскольку теперь для соприкасающихся металлов уровни Ферми совпадают, а работы выхода Авых1 и Авых2 не изменяются, то потенциальная энергия электронов в точках, лежащих вне металлов в непосредственной близости от их поверхности (точки А и В на рис. 3), будет различной. Следовательно, между точками А и B устанавливается разность потенциалов, которая, как следует из рисунка, равна

Разность потенциалов, обусловленная различием работ выхода контактирующих металлов, называется внешней контактной разностью потенциалов - ∆φвнеш или просто контактной разностью потенциалов.

Разность уровней Ферми в контактирующих металлах приводит к возникновению внутренней контактной разности потенциалов, которая равна

.

Внутренняя контактная разность потенциалов ∆φвнут зависит от температуры Т контакта металлов (поскольку положение самого EF зависит от Т), обусловливая многие термоэлектрические явления. Как правило ∆φвнут << ∆φвнеш.



При приведении в соприкосновение трёх разнородных проводников разность потенциалов между концами разомкнутой цепи после установления термодинамического равновесия окажется равной алгебраической сумме разностей потенциалов во всех контактах.

Согласно представлениям электронной теории, проводимость металлов обусловлена наличием в них свободных электронов. Электроны находятся в состоянии беспорядочного теплового движения, подобного хаотическому движению молекул газа. Число свободных электронов n, заключенных в единице объема (концентрация), не одинаково у разных металлов. Для металлов концентрации свободных электронов имеют порядок 1025-1027 м-3.

Предположим, что концентрации свободных электронов в металлах неодинаковы - n1 ≠ n2. Тогда за одно и то же время через контакт из металла с большей концентрацией электронов перейдет больше, чем в обратном направлении (концентрационная диффузия). В области контакта дополнительно возникнет разность потенциалов ∆φвнут. В области контакта концентрация электронов будет плавно изменяться от n1 до n2. Для расчета ∆φвнут выделим в области контакта небольшой объем, имеющий форму цилиндра с образующими, перпендикулярными границе раздела металлов (рис. 4), и будем считать, что у первого металла концентрация электронов равна n1 = n, а у второго она больше, т.е. n2 = n+dn.

 

Далее будем рассматривать свободные электроны как некоторый электронный газ, удовлетворяющий основным представлениям молекулярно-кинетической теории идеальных газов. Давление p газа в основании цилиндра 1 при температуре T равно:

,

(3)

где – постоянная Больцмана.

Давление в основании цилиндра 2 соответственно будет:

.

(4)



Разность давлений вдоль цилиндра равна:

(5)
.

Под влиянием разности давлений возникнет поток электронов через границу раздела металлов из области большего давления р2 в направлении основания 1 (а на рис. 4). Равновесие наступит, когда сила dFэл возникшего электрического поля с напряженностью E (рис. 4) станет равной силе давления dp×dS электронного газа, т.е.

(6)
.

Если число электронов в объёме dV=dx×dS цилиндра равно dN=ndV, то сила электрического поля, действующая на них, будет определяться:

.

Напряжённость E электрического поля численно равна градиенту потенциала , т.е.

(8)
(10)
(7)
.

Подставляя E в формулу (7) и далее в уравнение (6), с учётом формулы (5) получим:

,

.

Разделим переменные

(9)
.

Проинтегрируем:

 

(10).
.

Поскольку концентрации свободных электронов у металлов различаются незначительно, то величина ∆φвнут существенно меньше разности потенциалов ∆φвнеш. Величина ∆φвнут достигает нескольких десятков милливольт, тогда как ∆φвнеш может иметь порядок нескольких вольт.

Полная разность потенциалов при контакте металлов с учетом формулы (10) определяется:

(11)
.

Рассмотрим теперь замкнутую цепь из двух различных проводников (рис. 5). Полная разность потенциалов в этой цепи равна сумме разностей потенциалов в контактах 1 и 2:

(12)
.

При указанном на рис. 3 направлении обхода ∆φ12 = -∆φ21. Тогда уравнение для всей цепи:

(13)

Если T1≠T2, то и ∆φ ≠ 0. Алгебраическая сумма всех скачков потенциалов в замкнутой цепи равна электродвижущей силе (ЭДС), действующей в цепи. Следовательно, при T1 ≠ T2 в цепи (рис. 5) возникает ЭДС, равная в соответствии с формулами (12) и (13):

(14)

Обозначим

(15)
.

Следовательно формула (15) примет вид

(16)
.

 

Таким образом ЭДС в замкнутой цепи из однородных проводников зависит от разности температур контактов. Термо-ЭДС — электродвижущая сила ε, возникающая в электрической цепи, состоящей из нескольких разнородных проводников, контакты между которыми имеют различные температуры (эффект Зеебека). Если вдоль проводника существует градиент температуры, то электроны на горячем конце приобретают более высокие энергии и скорости. В полупроводниках, кроме того, концентрация электронов растёт с температурой. В результате возникает поток электронов от горячего конца к холодному, на холодном конце накапливается отрицательный заряд, а на горячем остаётся нескомпенсированный положительный заряд. Алгебраическая сумма таких разностей потенциалов в цепи создаёт одну из составляющих термо-ЭДС, которую называют объёмной.

Контактная разность потенциалов может достигать нескольких вольт. Она зависит от строения проводника (его объемных электронных свойств) и от состояния его поверхности. Поэтому контактную разность потенциалов можно изменять обработкой поверхностей (покрытиями, адсорбцией и т. п.).

Анализируя всё выше написанное, можно сделать выводы, известные как законы Вольта:

1. Контактная разность потенциалов, возникающая при соединении двух металлов, зависит только от их химического состава (т.е. от Авых и концентрации n) и температуры контактов.

2. В замкнутой цепи, состоящей из разнородных металлов, находящихся при одинаковой температуре (Т12), контактная разность потенциалов ∆φ равна нулю (ЭДС и ток в цепи не возникают).

3. Разность потенциалов на концах цепи, состоящей из нескольких последовательно соединенных различных металлов, не зависит от количества звеньев цепи и химического состава промежуточных проводников. Она равна контактной разности потенциалов лишь крайних проводников цепи.

В самом деле, для цепи, показанной на рис. 6: .

 


Эта страница нарушает авторские права

allrefrs.ru - 2019 год. Все права принадлежат их авторам!