Главная Обратная связь Поможем написать вашу работу!

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Первое знакомство с молекулярной биологией



Ранее в этой главе мы уже показали, что в сильно неравновесных условиях протекают процессы самоорга­низации различных типов. Одни из них приводят к уста­новлению химических колебаний, другие — к появлению пространственных структур. Мы видели, что основным условием возникновения явлений самоорганизации явля­ется существование каталитических эффектов.

В то время как в неорганическом мире обратная связь между «следствиями» (конечными продуктами) нелинейных реакций и породившими их «причинами» встречается сравнительно редко, в живых системах об­ратная связь (как установлено молекулярной биологи­ей), напротив, является скорее правилом, чем исключе­нием. Автокатализ (присутствие вещества Х ускоряет процесс образования его в результате реакции), автоингибиция (присутствие вещества Х блокирует катализ, необходимый для производства X) и кросс-катализ (каждое из двух веществ, принадлежащих различным цепям реакций, является катализатором для синтеза другого) лежат в основе классического механизма регу­ляции, обеспечивающего согласованность метаболиче­ской функции.

Нам бы хотелось подчеркнуть одно любопытное раз­личие. В примерах самоорганизации, известных из не­органической химии, молекулы, участвующие в реак­циях, просты, тогда как механизмы реакций сложны (например, в реакции Белоусова—Жаботинского уда­лось установить около тридцати различных промежуточ­ных соединений). С другой стороны, во многих примерах самоорганизации, известных из биологии, схема реакции проста, тогда как молекулы, участвующие в реакции веществ (протеинов нуклеиновых кислот и т. д.), весьма сложны и специфичны. Отмеченное нами различие вряд ли носит случайный характер. В нем проявляется некий первичный элемент, присущий различию между физикой и биологией. У биологических систем есть прошлое. Об­разующие их молекулы — итог предшествующей эволю­ции; они были отобраны для участия в автокаталитиче­ских механизмах, призванных породить весьма специ­фические формы процессов организации.

Описание сложной сети метаболической активности и торможения является существенным шагом в понима­нии функциональной логики биологических систем. К последней мы относим включение в нужный момент синтеза необходимых веществ и блокирование тех хими­ческих реакций, неиспользованные продукты которых могли бы угрожать клетке переполнением.



Основной механизм, с помощью которого молекуляр­ная биология объясняет передачу и переработку генети­ческой информации, по существу, является петлей об­ратной связи, т. е. нелинейным механизмом. Дезоксирибонуклеиновая кислота (ДНК), содержащая в линейно упорядоченном виде всю информацию, необходимую для синтеза различных основных протеинов (без которых невозможно строительство и функционирование клетки), участвует в последовательности реакций, в ходе кото­рых вся информация кодируется в виде определенной последовательности различных протеинов. Некоторые ферменты осуществляют обратную связь среди синтези­рованных протеинов, активируя и регулируя не только различные стадии превращений, но и автокаталитиче­ский механизм репликации ДНК, позволяющий копиро­вать генетическую информацию с такой же скоростью, с какой размножаются клетки.

Молекулярная биология — один из наиболее ярких примеров конвергенции двух наук. Понимание процес­сов, происходящих на молекулярном уровне в биологи­ческих системах, требует взаимно дополняющего разви­тия физики и биологии, первой — в направлении слож­ного, второй — простого.



Фактически уже сейчас физика имеет дело с иссле­дованием сложных ситуаций, далеких от идеализации, описываемых равновесной термодинамикой, а молеку­лярная биология добилась больших успехов в установ­лении связи живых структур с относительно небольшим числом основных биомолекул. Исследуя множество са­мых различных химических механизмов, молекулярная биология установила мельчайшие детали цепей метабо­лических реакций, выяснила тонкую, сложную логику регулирования, ингибирования и активации каталитиче­ской функции ферментов, связанных с критическими стадиями каждой из метаболических цепей. Тем самым молекулярная биология установила на микроскопиче­ском уровне основы тех неустойчивостей, которые могут происходить в сильно неравновесных условиях.

В некотором смысле живые системы можно сравнить с хорошо налаженным фабричным производством: с од­ной стороны, они являются вместилищем многочислен­ных химических превращений, с другой — демонстри­руют великолепную пространственно-временную органи­зацию с весьма неравномерным распределением биохи­мического материала. Ныне перед нами открывается возможность связать воедино функцию и структуру. Рассмотрим кратко два примера, интенсивно исследо­вавшиеся в последние годы.

Начнем с гликолиза: цепи метаболических реакций, приводящих к расщеплению глюкозы и синтезу аденозинтрифосфата (АТФ) — универсального аккумулятора энергии, общего для всех живых клеток. При расщепле­нии каждой молекулы глюкозы две молекулы АДФ (аденозиндифосфата) превращаются в две молекулы АТФ. Гликолиз может служить наглядным примером взаимной дополнительности аналитического подхода биологии и физического исследования устойчивости в сильно неравновесной области6.

В ходе биохимических экспериментов были обнару­жены колебания во времени концентраций, связанных с гликолитическим циклом7. Было показано, что эти ко­лебания определяются ключевой стадией в цепи реак­ций — стадией, активируемой АДФ и ингибируемой АТФ. Это — типично нелинейное явление, хорошо при­способленное к регулированию метаболизма. Всякий раз, когда клетка черпает энергию из своих энергети­ческих резервов, она использует фосфатные связи, и АТФ превращается в АДФ. Таким образом, накопление АДФ внутри клетки свидетельствует об интенсивном потреблении энергии и необходимости пополнить энер­гетические запасы, в то время как накопление АТФ оз­начает, что расщепление глюкозы может происходить в более медленном темпе.



Теоретическое исследование гликолиза показало, что предложенный механизм действительно может порож­дать концентрационные колебания, т. е. обеспечивать работу химических часов. Вычисленные из теоретических соображений значения концентраций, необходимые для возникновения колебаний, и величина периода цикла согласуются с экспериментальными данными. Гликолитические колебания вызывают модуляцию всех энерге­тических процессов в клетке, зависящих от концентрации АТФ, и, следовательно, косвенно влияют на другие метаболические цепи.

Можно пойти еще дальше и показать, что в гликолитическом цикле ход реакций регулируется некоторыми ключевыми ферментами, причем сами реакции проте­кают в сильно неравновесных условиях. Такие расчеты были выполнены Бенно Хессом8, а полученные резуль­таты обобщены и на другие системы. При обычных условиях; гликолитический цикл соответствует химиче­ским часам, но изменение этих условий может привести к образованию пространственных структур в полном соответствии с предсказаниями на основе существующих теоретических моделей.

С точки зрения термодинамики живая система отли­чается необычайной сложностью. Одни реакции проте­кают в слабо неравновесных условиях, другие — в силь­но неравновесных условиях. Не все в живой системе «живо». Проходящий через живую систему поток энер­гии несколько напоминает течение реки — то спокойной и плавной, то низвергающейся водопадом и высвобож­дающей часть накопленной в ней энергии.

Рассмотрим еще один биологический процесс, также исследованный «на устойчивость»: образование колоний у коллективных амеб Dictyostelium discoideum. Этот процесс интересен как пример явления, пограничного между одноклеточной и многоклеточной биологией.

Когда запас питательных веществ в той среде, в ко­торой живут и размножаются коллективные амебы, ис­сякает, происходит удивительная перестройка (рис. А): отдельные клетки начинают соединяться в колонию, на­считывающую несколько десятков тысяч клеток. Обра­зовавшийся «псевдоплазмодий» претерпевает дифферен­циацию, причем очертания его непрерывно изменяются. Образуется «ножка», состоящая примерно из трети всех клеток, с избыточным содержанием целлюлозы. Эта «ножка» несет на себе круглую «головку», напол­ненную спорами, которые отделяются и распространя­ются. Как только споры приходят в соприкосновение с достаточно питательной средой, они начинают размно­жаться и образуют новую колонию коллективных амеб. Перед нами наглядный пример приспособления к окру­жающей среде. Популяция обитает в некоторой области до тех пор, пока не исчерпывает имеющиеся там ресур­сы. Затем она претерпевает метаморфозу, в результате которой обретает способность передвигаться и осваивать другие области.

Исследование первой стадии образования колонии показало, что она начинается с волн перемещения отдельных амеб, распространяющихся по их популяции к спонтанно возникающему «центру притяжения». Экспе­риментальные исследования и анализ теоретических моделей установили, что миграция является откликом клеток на существование в среде градиента концентра­ции ключевого вещества — циклической АМФ, периоди­чески испускаемого сначала амебой, ставшей центром притяжения, а затем — после срабатывания механизма задержки — и другими амебами. И в этом случае мы видим, какую важную роль играют химические часы. Как уже неоднократно подчеркивалось, они, по сущест­ву, являются новым средством связи. В случае коллек­тивных амеб механизм самоорганизации приводит к установлению связи между клетками.

Мы хотели бы подчеркнуть еще один аспект. Образование колоний коллективных амеб — типичный пример того, что можно было бы назвать «порядком через флуктуации»: возникновение «центра притяжения», ис­пускающего циклическую АМФ, сигнализирует о потере устойчивости нормальной питательной среды, т. е. об исчерпании запаса питательных веществ. То, что при нехватке пищевого ресурса любая амеба может начать испускание химических сигналов — циклической АМФ — и, таким образом, стать «центром притяжения» для ос­тальных амеб, соответствует случайному характеру флуктуации. В данном случае флуктуация усиливается и организует среду.


Просмотров 588

Эта страница нарушает авторские права




allrefrs.ru - 2021 год. Все права принадлежат их авторам!