Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Дефект массы и энергия связи ядра



Задача

t = 1 сут = 86400 c T1/2 = 3,82 сут = 330048 с N0 - N = 0,182N0
λ - ?


Дано:

 

Решение:

 

Основной закон радиоактивного распада

где λ - постоянная распада, N0 – первоначальное

количество ядер полония

 

Постоянная распада

 

 

Ответ:

 

 

Билет 23

1. Дифракция в параллельных лучах на одной щели.

Пусть в непрерывном экране есть щель: ширина щели , длина щели (перпендикулярно плоскости листа) (рис. 9.5). На щель падают параллельные лучи света. Для облегчения расчета считаем, что в плоскости щели АВ амплитуды и фазы падающих волн одинаковы.

2. Рис. 9.5

Разобьем щель на зоны Френеля так, чтобы оптическая разность хода между лучами, идущими от соседних зон, была равна .

Если на ширине щели укладывается четное число таких зон, то в точке (побочный фокус линзы) будет наблюдаться минимум интенсивности, а если нечетное число зон, то максимум интенсивности:

  условие минимума интенсивности; (9.4.1)  

3.

  условие максимума интенсивности (9.4.2)  

Картина будет симметричной относительно главного фокуса точки . Знак плюс и минус соответствует углам, отсчитанным в ту или иную сторону.

Интенсивность света . Как видно из рис. 9.5, центральный максимум по интенсивности превосходит все остальные.

Рассмотрим влияние ширины щели.

Т.к. условие минимума имеет вид , отсюда

  . (9.4.3)  

Из этой формулы видно, что с увеличением ширины щели b положения минимумов сдвигаются к центру, центральный максимум становится резче.

При уменьшении ширины щели b вся картина расширяется, расплывается, центральная полоска тоже расширяется, захватывая все большую часть экрана, а интенсивность ее уменьшается.

 

2. ПАУЛИ ПРИНЦИП, фундаментальный принцип квантовой механику согласно к-рому у системы тождественныхэлементарных частиц с полуцелым спином (фер-мионов) каждое квантовое состояние м. б. заполнено не более чем одной частицей. В. Паули сформулировал этот принцип, названный им принципом запрета, в январе 1925, незадолго до того, как была создана квантовая механика (1925-26), для объяснения наблюдаемых закономерностей вэлектронных спектрах атомов, помещенных в магн. поле.



3 задача.

Решение:

232/90 Th = 232-4-4-4/90-2-2-2= 220/84 Po-после 3 альфа распадов

220/84 Po=220/84+2+2=220/88 Ra- после 2 альфа распадов

 

Билет 24

.1. Дифракция на круглом отверстии.Сферическая волна, распространяющаяся из точечного источника 5, встречает на своем пути экран с круглым отверстием. Дифракционную картину наблюдаем на экране (Э) в точке В, лежащей на линии, соединяющей S с центром отверстия (рис. 259). Экран параллелен плоскости отвер­стия и находится от него на расстоянии b. Разобьем открытую часть волновой по­верхности Ф на зоны Френеля. Вид диф­ракционной картины зависит от числа зон Френеля, укладывающихся в отверстии. Амплитуда результирующего колебания, возбуждаемого в точкеВ всеми зонами

А=А1/2±Аm/2,

где знак плюс соответствует нечетным т и минус — четным от.

Когда отверстие открывает нечетное число зон Френеля, то амплитуда (интен­сивность) в точке В будет больше, чем при

 

 

свободном распространении волны, если четное, то амплитуда (интенсивность) бу­дет равна нулю. Если в отверстие уклады­вается одна зона Френеля, то в точке В амплитуда А=А1, т. е. вдвое больше, чем в отсутствие непрозрачного экрана с отверстием (см. §177). Интенсивность света больше соответственно в четыре ра­за. Если в отверстии укладываются две зоны Френеля, то их действия в точке Впрактически уничтожат друг друга из-за интерференции. Таким образом, дифрак­ционная картина от круглого отверстия вблизи точки В будет иметь вид чередую­щихся темных и светлых колец с центрами в точке В (если т четное, то в центре будет темное кольцо, если т нечетное — то светлое кольцо), причем интенсивность максимумов убывает с расстоянием от центра картины.



Расчет амплитуды результирующего колебания на внеосевых участках экрана более сложен, так как соответствующие им зоны Френеля частично перекрываются непрозрачным экраном. Если отверстие освещается не монохроматическим, а бе­лым светом, то кольца окрашены.

Число зон Френеля, укладывающихся в отверстии, зависит от его диаметра. Если он большой, то Am<<A1 и результирующая амплитуда А=А1/2, т. е. такая же, как и при полностью открытом волновом фрон­те. Никакой дифракционной картины не наблюдается, свет распространяется, как

и в отсутствие круглого отверстия, прямо­линейно.

Дифракция на диске.Сферическая волна, распространяющаяся от точечного источника 5, встречает на своем пути диск. Дифракционную картину наблюдаем на экране (Э) в точке В, лежащей на линии, соединяющей S с центром диска (рис. 260). В данном случае закрытый диском участок фронта волны надо исклю­чить из рассмотрения и зоны Френеля строить начиная с краев диска. Пусть диск закрывает m первых зон Френеля. Тогда амплитуда результирующего колебания в точке В равна

так как выражения, стоящие в скобках, равны нулю. Следовательно, в точке В всегда наблюдается интерференционный максимум (светлое пятно), соответствую­щий половине действия первой открытой зоны Френеля. Центральный максимум ок­ружен концентрическими с ним темными и светлыми кольцами, а интенсивность максимумов убывает с расстоянием от центра картины.

С увеличением радиуса диска первая открытая зона Френеля удаляется от точ­ки В и увеличивается угол jm (см. рис. 258) между нормалью к поверхности этой зоны и направлением на точку В. В ре­зультате интенсивность центрального мак­симума с увеличением размеров диска уменьшается. При больших размерах диска за ним наблюдается тень, вблизи границ которой имеет место весьма слабая дифракционная картина. В данном случае дифракцией света можно пренебречь и считать свет распространяющимся пря­молинейно.

Отметим, что дифракция на круглом от­верстии и дифракция на диске впервые рассмотрены Френелем.

 

Дефект массы и энергия связи ядра

Исследования показывают, что атомные ядра являются устойчивыми образованиями. Это означает, что в ядре между нуклонами существует определенная связь.Массу ядер очень точно можно определить с помощью масс-спектрометров — измерительных приборов, разделяющих с помощью электрических и магнитных полей пучки заряженных частиц (обычно ионов) с разными удельными зарядами Q/m. Масс-спектрометрические измерения показали, что масса ядра меньше, чем сумма масс составляющих его нуклонов. Но так как всякому изменению массы должно соответствовать изменение энергии, то, следовательно, при образовании ядра должна выделяться определенная энергия. Из закона сохранения энергии вытекает и обратное: для разделения ядра на составные части необходимо затратить такое же количество энергии, которое выделяется при его образовании. Энергия, которую необходимо затратить, чтобы расщепить ядро на отдельные нуклоны, называется энергией связи ядра.

Согласно выражению (40.9), энергия связи нуклонов в ядре

(252.1)

где тp, тn, тя соответственно массы протона, нейтрона и ядра. В таблицах обычно приводятся не массы тя ядер, а массы т атомов. Поэтому для энергии связи ядра пользуются формулой

(252.2)

где mH — масса атома водорода. Так как mH больше mp на величину me, то первый член в квадратных скобках включает в себя массу Z электронов. Но так как масса атома т отличается от массы ядра тя как раз на массу Z электронов, то вычисления по формулам (252.1) и (252.2) приводят к одинаковым результатам.

Величина

называетсядефектом массы ядра. На эту величину уменьшается масса всех нуклонов при образовании из них атомного ядра.

Атомные ядра способны вступать в соединения с другими ядрами, особенно легкими, такими, как дейтон (ядро изотопа водорода – дейтерия), тритон (ядро изотопа водорода – трития), a - частица (ядро атома гелия ), а также с другими легкими частицами. Соединение ядер с другими ядрами или частицами, а также распад ядер принято называть ядерными реакциями.

В общепринятой сокращенной форме записи ядерных реакций сначала пишут символ исходного ядра, затем в скобках записывают налетающую и образующуюся частицы и за скобками в конце – символ образовавшегося ядра. Например, запись означает, что в данной ядерной реакции в результате бомбардировки ядра a -частицей образовались протон и новое ядро :

В ядерных реакциях выполняются законы сохранения электрического заряда и числа нуклонов (массового числа).

3.Задача

Решение:

R=1,1*107 м-1, n=бесконечности,

Здесь n и m – номера орбит, R – постоянная Ридберга. Для серии Бальмера m = 2, n = 3, 4, 5, .... Граница серии – это когда n = ∞ (электрон в атоме переходит с самой «высокой» орбиты на вторую). Таким образом

1/λ=R⋅(1/22−1/∞2)=R⋅(1/4−0)=R/4

λ=4/R.

Ответ: 364,63 нм.

 

 


Эта страница нарушает авторские права

allrefrs.ru - 2019 год. Все права принадлежат их авторам!