Главная Обратная связь Поможем написать вашу работу!

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Уравнение затухающих колебаний



Затухающие колебания — колебания, энергия которых уменьшается с течением времени. Бесконечно длящийся процесс вида в природе невозможен. Свободные колебания любого осциллятора рано или поздно затухают и прекращаются. Поэтому на практике обычно имеют дело с затухающими колебаниями. Они характеризуются тем, что амплитуда колебаний A является убывающей функцией. Обычно затухание происходит под действием сил сопротивления среды, наиболее часто выражаемых линейной зависимостью от скорости колебаний или её квадрата.

Пусть имеется система, состоящая из пружины (подчиняющейся закону Гука), один конец которой жёстко закреплён, а на другом находится тело массой m. Колебания совершаются в среде, где сила сопротивления пропорциональна скорости с коэффициентом c (см. вязкое трение).

Тогда второй закон Ньютона для рассматриваемой системы запишется так:

где — сила сопротивления, — сила упругости

, , то есть

или в дифференциальной форме

где k — коэффициент упругости в законе Гука, c — коэффициент сопротивления, устанавливающий соотношение между скоростью движения грузика и возникающей при этом силой сопротивления.

Для упрощения вводятся следующие обозначения:

Величину называют собственной частотой системы, — коэффициентом затухания.

Тогда дифференциальное уравнение принимает вид

Сделав замену , получают характеристическое уравнение

Корни которого вычисляются по следующей формуле

Зависимость графиков колебаний от значения .

В зависимости от величины коэффициента затухания решение разделяется на три возможных варианта.

· Апериодичность

Если , то имеется два действительных корня, и решение дифференциального уравнения принимает вид:

В этом случае колебания с самого начала экспоненциально затухают.

· Граница апериодичности

Если , два действительных корня совпадают , и решением уравнения является:

В данном случае может иметь место вре́менный рост, но потом — экспоненциальное затухание.

· Слабое затухание



Если , то решением характеристического уравнения являются два комплексно сопряжённых корня

Тогда решением исходного дифференциального уравнения является

Где — собственная частота затухающих колебаний.

Константы и в каждом из случаев определяются из начальных условий:

 

 

Коэффициент затухания.

Затуханием колебаний называется постепенное ослабление колебаний с течением времени, обусловленное потерей энергии колебательной системой. Закон затухания колебаний зависит от свойств колебательной системы. Система называется линейной, если параметры, характеризующие существенные в рассматриваемом процессе физические свойства системы, не изменяются в ходе процесса. Свободные затухающие колебания линейной системы описываются уравнением:

, (7.1.1)

где - коэффициент затухания, - собственная частота системы, т.е. частота, с которой совершались бы колебания в отсутствии затухания. Выражение коэффициента затухания через параметры системы зависит от вида колебательной системы. Например, для пружинного маятника где r - коэффициент сопротивления, т.е. коэффициент пропорциональности между скоростью и силой сопротивления. Для затухающих колебаний в колебательном контуре (рис.7.1.1): , где R - величина активного сопротивления контура.

Для решения уравнения (7.1.1) производится подстановка . Эта подстановка приводит к характеристическому уравнению:



, (7.1.2)

которое имеет два корня:

, . (7.1.3)

При не слишком большом затухании (при ) подкоренное выражение будет отрицательным. Если его представить в виде , где - вещественная положительная величина, называемая циклической частотой затухающих колебаний и равная , то корни уравнения (3) запишутся в виде:

и . (7.1.4)

Общим решением уравнения (7.1.1) будет функция:

(7.1.5)

которую можно представить в виде:

, (7.1.6)

Здесь и - произвольные постоянные.

В соответствии с (7.1.6) движение системы можно условно рассматривать как гармоническое колебание частоты w с амплитудой, изменяющейся по закону:

. (7.1.7)

Скорость затухания колебаний определяется коэффициентом затухания . В соответствии с выражением (7.1.7) коэффициент затухания обратен по величине тому промежутку времени, за который амплитуда колебаний уменьшается в «e»=2.718 раз.

 

 

Период затухающих колебаний

Период затухающих колебаний определяется формулой:

. (7.1.8)

При незначительном затухании ( ) период колебаний практически равен . С ростом период увеличивается. Из соотношения (7.1.7) следует, что . Такое отношение амплитуд называется декрементом затухания, а его натуральный логарифм - логарифмическим декрементом затухания:

. (7.1.9)

Логарифмический декремент затухания обратен по величине числу колебаний, совершаемых за то время, за которое амплитуда уменьшается в «e» раз. Помимо рассмотренных величин для характеристики колебательной системы употребляется величина , называемая добротностью колебательной системы. Добротность пропорциональна числу колебаний, совершаемых системой за то время, за которое амплитуда колебаний уменьшается в «e» раз. Большим значениям добротности соответствует малое затухание. Энергия колебательной системы убывает со временем. Это обусловлено наличием затухания. При малом затухании, когда энергия изменяется по закону:



, (7.1.10)

где - значение энергии в начальный момент.

Можно показать, что при слабом затухании добротность с точностью до множителя 2p равна отношению энергии, запасенной в системе в данный момент времени, к убыли этой энергии за один период колебаний.

С ростом g период колебаний увеличивается. При период обращается в бесконечность, т.е. движение перестает быть периодическим. При выведенная из положения равновесия система возвращается в него, не совершая колебаний.

Декремент затуханий.

При незначительном затухании ( ) период колебаний практически равен . С ростом период увеличивается. Из соотношения (7.1.7) следует, что . Такое отношение амплитуд называется декрементом затухания, а его натуральный логарифм - логарифмическим декрементом затухания:

. (7.1.9)


Просмотров 1223

Эта страница нарушает авторские права




allrefrs.ru - 2021 год. Все права принадлежат их авторам!