Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






СВОБОДНОЕ ГАРМОНИЧЕСКОЕ КОЛЕБАНИЕ



синусоидальное колебание. Если механическая или фи-зич. величина х(t), где t - время, меняется по закону

(1)

то говорят, что х(t)совершает С. г. к. Здесь А,w, j - действительные постоянные, А> 0, w > 0. Величины А,w, j наз. соответственно амплитудой, частотой, фазой С. г. к. П е р и о д С. г. к. равен

T=2p/w. В физике и технике часто употребляется такая терминология: С. г. к. наз. гармоническим колебанием, или простым гармоническим колебанием, функция вида (1) наз.гармоникой, переменная величина wt+j наз. мгновенной фазой, а постоянная j - начальной фазой. Величина w наз. также круговой, или циклической, частотой, а f=w/2p- частотой. С. г. к. (1) можно записать в виде

где а, b и А,j связаны соотношениями

или в виде

Часто фазой наз. не j, а -j.

Малые колебания механических или физич. систем с одной степенью свободы вблизи устойчивого невырожденного положения равновесия представляют собой С. г. к. с большой степенью точности. Таковы, напр., малые колебания маятника; колебания груза, подвешенного на пружинке; колебания камертона; изменение напряжения и силы тока в электрическом колебательном контуре; качка корабля и т. д. Система, совершающая С. г. к., наз. линейным г а р м о н и ч е с к и м о с ц и л л я т о р о м, и ее колебания описываются уравнением

Для математич. маятника длины lи массы т:w2=g/l, для груза массы тна пружинке с коэффициентом упругости k:w2=k/m; для электрического колебательного контура, состоящего из емкости Си индуктивности L : w2=1/ СL. На фазовой плоскости положение равновесия для С. г. к. есть центр, а фазовые траектории - окружности.

Сумма двух С. г. к. х 1(t)+х 2(t),

где

с соизмеримыми частотами w1,w2 есть С. г. к. Если же частоты w1, w2 несоизмеримы, то х 1(t)+x2(t)есть почти периодическая функция и

Сумма n С. г. к. с частотами w1,. . ., wn, к-рые рационально независимы, также есть почти периодич. функция. Для суммы двух С. г. к. величина наз. р а с с т р о й к о й. Если расстройка мала: - одного порядка, то

"Амплитуда" А(t)-- медленно меняющаяся функция, имеющая период , и А 2(t)меняется в пределах от (А 12)2 до (A1+A2)2. Колебание х 1(t)2(t)наз. б и е н и е м: "амплитуда" А(t)поочередно увеличивается и уменьшается. Этот случай важен для анализа приемных устройств.

Пусть имеется система из пуравнений:

где М, K - действительные симметрические положительно определенные матрицы с постоянными элементами. С помощью ортогонального преобразования



х- Ту эта система приводится к распадающейся системе:

 

Физический и математический маятник

Математический маятник.

Математическим маятником называется материальная точка, подвешенная на нерастяжимой невесомой нити, совершающая колебательное движение в одной вертикальной плоскости под действием силы тяжести.

Таким маятником можно считать тяжелый шар массой m, подвешенный на тонкой нити, длина l которой намного больше размеров шара. Если его отклонить на угол α (рис.7.3.) от вертикальной линии, то под влиянием силы F – одной из составляющих веса Р он будет совершать колебания. Другая составляющая , направленная вдоль нити, не учитывается, т.к. уравновешивается силой натяжения нити. При малых углах смещения и, тогда координату х можно отсчитывать по горизонтальному направлению. Из рис.7.3 видно, что составляющая веса, перпендикулярная нити, равна

Знак минус в правой части означает то, что сила F направлена в сторону уменьшения угла α. С учетом малости угла α

Для вывода закона движения математического и физического маятников используем основное уравнение динамики вращательного движения

Момент силы относительно точки О: , и момент инерции:
M=FL .
Момент инерции J в данном случае
Угловое ускорение:

С учетом этих величин имеем:

или

(7.8)

Его решение
,

где и (7.9)

Как видим, период колебаний математического маятника зависит от его длины и ускорения силы тяжести и не зависит от амплитуды колебаний.

Физический маятник.

Физическим маятником называется твердое тело, закрепленное на неподвижной горизонтальной ocи (оси подвеса), не проходящей через центр тяжести, и совершающее колебания относительно этой оси под действием силы тяжести. В отличие от математического маятника массу такого тела нельзя считать точечной.



При небольших углах отклонения α (рис. 7.4) физический маятник так же совершает гармонические колебания. Будем считать, что вес физического маятника приложен к его центру тяжести в точке С. Силой, которая возвращает маятник в положение равновесия, в данном случае будет составляющая силы тяжести – сила F.

Знак минус в правой части означает то, что сила F направлена в сторону уменьшения угла α. С учетом малости угла α

Для вывода закона движения математического и физического маятников используем основное уравнение динамики вращательного движения

. Момент силы: определить в явном виде нельзя. С учетом всех величин, входящих в исходное дифференциальное уравнение колебаний физического маятника имеет вид:

(7.10)

 

(7.11)

Решение этого уравнения

Определим длину l математического маятника, при которой период его колебаний равен периоду колебаний физического маятника, т.е. или

.
Из этого соотношения определяем

Данная формула определяет приведенную длину физического маятника, т.е. длину такого математического маятника, период колебаний которого равен периоду колебаний данного физического маятника.


Эта страница нарушает авторские права

allrefrs.ru - 2019 год. Все права принадлежат их авторам!