Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Вопрос 12 Механические колебания



Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени.

гармонические колебания – колебания, при которых колеблющаяся величина изменяется со временем по закону синуса (косинуса).

 

Гармонические колебания величины s описываются уравнением типа

s = A cos (ω0 + φ), (1.81)

где А – максимальное значение колеблющейся величины, называемое амплитудой колебания, ω0 круговая (циклическая) частота, (φ – начальная фаза колебания в момент времени t = 0, (ω0t + φ) – фаза колебания в момент времени t. Фаза колебания определяет значение колеблющейся величины в данный момент времени. Так как косинус изменяется в пределах от +1 до -1, то s может принимать значения от до -А.

Определенные состояния системы, совершающей гармонические колебания, повторяются через промежуток времени Т, называемыйпериодом колебания, за который фаза колебания получает приращение 2π, т. е.

ω0(t+T)+φ =(ω0t +φ)+2π (1.82)

откуда

Т=2π/ω0. (1.83)

Величина, обратная периоду колебаний,

ν = 1/T (1.84)

т. е. число полных колебаний, совершаемых в единицу времени, называетсячастотой колебаний. Сравнивая (1.83) и (1.84), получим

ω0=2πν. (1.85)

Единица частоты –герц (Гц): 1 Гц – частота периодического процесса, при которой за 1 с совершается один цикл процесса.

Запишем первую и вторую производные по времени от гармонически колеблющейся величины s:

ds /dt = -Aω0 sin(ω0 t +φ) = Aω0 cos (ω0t +φ+π/2); (1.86)
d2s / dt2 = -Aω02 cos (ω0 t + φ)= Aω02cos (ω0 t+φ+π ), (1.87)
     

т. е. имеем гармонические колебания с той же циклической частотой. Амплитуды величин (1.86) и (1.87) соответственно равны Аω0 и Аω02. Фаза величины (1.86) отличается от фазы величины (1.81) на π/2, а фаза величины (1.87) отличается от фазы величины (1.81) на π. Следовательно, в моменты времени, когда s = 0, ds/dt приобретает наибольшие значения; когда же s достигает отрицательного максимального значения, то d2s /dt2 приобретает положительное наибольшее значение (рисунок 1.53).

 

Из выражения (1.87) следуетдифференциальное уравнение гармонических колебаний

(1.88)

(где s=A cos (ω0t +φ)).



Решением этого уравнения является выражение (1.81).

Вопрос 18 Идеальный газ

Для вывода основного уравнения молекулярно-кинетической теории рассмотрим идеальный одноатомный газ. Предположим, что молекулы газа движутся хаотически, число взаимных столкновений между молекулами газа пренебрежимо мало по сравнению с числом ударов о стенки сосуда, а соударения молекул со стенками сосуда абсолютно упругие. Выделим на стенке сосуда некоторую элементарную площадку S (рисунок 2.5) и вычислим давление, оказываемое на эту площадку.

 

 

При каждом соударении молекула, движущаяся перпендикулярно площадке, передает ей импульс

m0v–(–m0v)=2m0v, (2.21)

где m0 – масса молекулы, v – ее скорость. За время t площадки S достигнут только те молекулы, которые заключены в объеме цилиндра с основанием S и высотой vt (рисунок 2.5). Число этих молекул равно nSvt (n – концентрация молекул).

Необходимо учитывать, что реально молекулы движутся к площадке S под разными углами и имеют различные скорости, причем скорость молекул при каждом соударении меняется. Для упрощения расчетов хаотическое движение молекул заменяют движением вдоль трех взаимно перпендикулярных направлений, так что в любой момент времени вдоль каждого из них движется 1/3 молекул. Половина этих молекул (т.е. 1/6 часть) движется вдоль данного направления в одну сторону, а вторая половина – в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку S будет 1/6 nSvt. При столкновении с площадкой эти молекулы передадут ей импульс

P = 2m0v1/6nSvt = 1/3nm0v2St (2.22)

Тогда давление газа, оказываемое им на стенку сосуда,



P = P/(tS) = 1/3nm0v2. (2.23)

Если газ в объеме V содержит N молекул, движущихся со скоростями v1, v2, ..., vN, то целесообразно рассматривать среднюю квадратичную скорость

<vкв>= , (2.24)

характеризующую всю совокупность молекул газа. Уравнение (2.23) с учетом (2.24) примет вид

p = 1/3nm0<vКВ>2. (2.25)

Выражение (2.25) называется основным уравнением молекулярно-кинетической теории идеальных газов.

PVm = RT  

Уравнению

удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеального газа, называемым также уравнением Клапейрона – Менделеева.

В молекулярно-кинетической теории пользуются моделью идеального газа, согласно которой считают, что:

1) собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда;

2) между молекулами газа отсутствуют силы взаимодействия;

3) столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.

Модель идеального газа можно использовать при изучении реальных газов в условиях, близких к нормальным (например, кислород и гелий), а также при низких давлениях и высоких температурах.


Эта страница нарушает авторские права

allrefrs.ru - 2019 год. Все права принадлежат их авторам!