Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Воздействие вредных веществ на организм человека в условиях производства. Системы промышленной вентиляции и кондиционирования



Методы и средства защиты от вибраций.

Вибрацией называется механическое колебательное движение, заключающееся в перемещении тела как целого. Вибрация в отличие от звука не распространяется в виде волн сжатия/разряжения и передается только при механическом контакте одного тела с другим.

В природе вибрация практически не встречается, но, к сожалению, очень часто возникает в технических устройствах. Кроме того, в технике вибрацию специально используют, например, при вибрационной транспортировке.

Для борьбы с вибрацией машин и оборудования и защиты работающих от вибрации используют различные методы. Борьба с вибрацией в источнике ее возникновения связана с установлением причин появления механических колебаний и их устранением. Для снижения вибрации широко используют эффект вибродемпфирования – превращение энергии механических колебаний в другие виды энергии, чаще всего в тепловую. С этой целью в конструкции деталей, через которые передается вибрация, применяют материалы с большим внутренним трением: специальные сплавы, пластмассы, резины, вибродемпфирующие покрытия. Для предотвращения общей вибрации используют установку вибрирующих машин и оборудования на самостоятельные виброгасящие фундаменты.

Для ослабления передачи вибрации от источников ее возникновения полу, рабочему месту, сиденью, рукоятке и т.п. широко применяют методы виброизоляции в виде виброизоляторов из резины, пробки, войлока, асбеста, стальных пружин.

Виброгашением называется гашение вибрации за счет активных потерь или превращения колебательной энергии в другие ее виды, например, в тепловую, электрическую, электромагнитную. Виброгашение может быть реализовано в случаях, когда конструкция выполнена из материалов с большими внутренними потерями; на ее поверхность нанесены вибропоглощающие материалы; используется контактное трение двух материалов; элементы конструкции соединены сердечниками электромагнитов с замкнутой обмоткой и др.

Наиболее действенным средством защиты человека от вибрации является устранение непосредственного контакта с вибрирующим оборудованием. Осуществляется это путем применения дистанционного управления, промышленных роботов, автоматизации и замены технологических операций.



Снижение неблагоприятного воздействия вибрации ручных механизированных устройств на операторов достигается как путем уменьшения интенсивности вибрации непосредственно в ее источнике (за счет конструктивных усовершенствований), так и средствами внешней виброзащиты, которые представляют собой упругодемпфирующие материалы и устройства, размещенные между источником вибрации и руками оператора.

В качестве средств индивидуальной защиты работающих используют специальную обувь на массивной резиновой подошве. Для защиты рук служат рукавицы, перчатки, вкладыши и прокладки, которые изготовляют из упругодемпфирующих материалов.

Важным фактором для снижения опасного воздействия вибрации на организм человека является правильная организация режима труда и отдыха, постоянное медицинское наблюдение за состоянием здоровья, лечебно-профилактические мероприятия – такие, как гидропроцедуры (теплые ванночки для рук и ног), массаж рук и ног, витаминизация и др.

 

Воздействие вредных веществ на организм человека в условиях производства. Системы промышленной вентиляции и кондиционирования.

Выполнение различных видов работ в промышленности со­провождается выделением в воздушную среду вредных веществ. Вредное вещество — это вещество, которое в случае нарушения требований безопасности может вызвать производственные трав­мы, профессиональные заболевания или отклонения в состоянии здоровья, обнаруживаемые как в процессе работы, так и в отда­ленные сроки жизни настоящих и последующих поколений.



Наиболее благоприятен для дыхания атмосферный воздух, со­держащий (% по объему) азота — 78,08, кислорода — 20,95, инерт­ных газов — 0,93, углекислого газа — 0,03, прочих газов — 0,01.

Вредные вещества, выделяющиеся в воздух рабочей зоны, изменяют его состав, в результате чего он существенно может отличаться от состава атмосферного воздуха.

При проведении различных технологических процессов в воздух выделяются твердые и жидкие частицы, а также пары и газы. Пары и газы образуют с воздухом смеси, а твердые и жид­кие частицы — аэродисперсные системы — аэрозоли. Аэрозолями называют воздух или газ, содержащие в себе взвешенные твер­дые или жидкие частицы. Аэрозоли принято делить на пыль, дым, туман. Пыли или дымы — это системы, состоящие из воз­духа или газа и распределенных в них частиц твердого вещества, а туманы — системы, образованные воздухом или газом и части­цами жидкости.

Проникновение вредных веществ в организм человека про­исходит через дыхательные пути (основной путь), а также через кожу и с пищей, если человек принимает ее, находясь на рабо­чем месте. Действие этих веществ следует рассматривать как воздействие опасных или вредных производственных факторов, так как они оказывают негативное (токсическое[7]) действие на организм человека. В результате воздействия этих веществ у че­ловека возникает отравление — болезненное состояние, тяжесть которого зависит от продолжительности воздействия, концен­трации и вида вредного вещества.

Существуют различные классификации вредных веществ, в основу которых положено их действие на человеческий организм. В соответствии с наиболее распространенной (по Е.Я. Юдину и С.В. Белову) классификацией вредные вещества делятся на шесть групп:

1)общетоксические

2)раздражающие

3)сенсибилизирующие

4)канцерогенные

5)мутагенные,

6)вещества, влияющие на репродуктивную (дето­родную) функцию человеческого организма.

Общетоксические вещества вызывают отравление всего орга­низма. Это оксид углерода, свинец, ртуть, мышьяк и его соеди­нения, бензол и др.

Раздражающие вещества вызывают раздражение дыхатель­ного тракта и слизистых оболочек человеческого организма. К этим веществам относятся: хлор, аммиак, пары ацетона, оксиды азота, озон и ряд других веществ.

Сенсибилизирующие вещества[8] действуют как аллергены, т.е. приводят к возникновению аллергии[9] у человека. Этим свойством обладают формальдегид, различные нитросоединения, никотинамид, гексахлоран и др.

Воздействие канцерогенных веществ на организм человека при­водит к возникновению и развитию злокачественных опухолей (раковых заболеваний). Канцерогенными являются оксиды хрома, 3,4-бензпирен, бериллий и его соединения, асбест и др.

 

Мутагенные вещества при воздействии на организм вызыва­ют изменение наследственной информации. Это радиоактивные вещества, марганец, свинец и т.д.

Среди веществ, влияющих на репродуктивную функцию челове­ческого организма, следует в первую очередь назвать ртуть, сви­нец, стирол, марганец, ряд радиоактивных веществ и др.

Пыль, попадая в организм человека, оказывает фиброгенное воздействие, заключающееся в раздражении слизистых оболочек дыхательных путей. Оседая в легких, пыль задерживается в них. При длительном вдыхании пыли возникают профессиональные заболевания легких — пневмокониозы. При вдыхании пыли, со­держащей свободный диоксид кремния (SiO2), развивается наи­более известная форма пневмокониоза — силикоз. Если диоксид кремния находится в связанном с другими соединениями со­стоянии, возникает профессиональное заболевание — силикатоз. Среди силикатозов наиболее распространены асбестоз, цементоз, талькоз.

 

 

Системы вентиляции и кондиционирования промышленных предприятий зачастую значительно отличаются от аналогичного оборудования для других зданий. (Здесь уместно вспомнить, что кондиционирование как таковое впервые было осуществлено не в быту, а как раз на предприятии). Как правило, промышленные системы крупнее, перемещают большие объемы воздуха, потребляют больше энергии. Выполняя функции технологического кондиционирования, они обеспечивают соблюдение необходимых параметров воздушной среды, в соответствии с требованиями производственного процесса и в силу ответственности выполняемых функций должны отличаться повышенной надежностью. Обычно промышленные системы строятся на базе центральных агрегатов и в зависимости от схемы воздухообработки имеют индивидуальную конфигурацию оборудования, позволяющую с максимальной эффективностью решать задачи по борьбе с тепловыделениями, запыленностью, высокой температурой, избыточной влажностью, повышенными концентрациями вредных веществ и таким образом обеспечивать необходимые параметры внутренней атмосферы.

 

Набор решаемых при этом задач может быть как относительно простым (например подача свежего воздуха для дыхания людей), так и весьма сложным (системы прецизионного кондиционирования). Сложностью задач определяется и количество дополнительного оборудования, необходимого для реализации выбранной схемы обработки воздуха. Это могут быть различные типы холодильных машин, дополнительные фильтры, увлажняющие или осушающие устройства и т. д. Наиболее часто к технологическому кондиционированию предъявляются требования по чистоте и относительной влажности внутреннего воздуха. Требования к температурному режиму, как правило, определяются соблюдением условий комфортности пребывания людей или поддержания работоспособности электронной аппаратуры.

 

54.Техногенные источники эле­ктромагнитного поля. Электростатические поля. Биологическое действие электромагнитных полей.

 

Техногенные источники ЭМП по их предназначению можно раз­делить на источники технологиче­ского характера, используемые в различных сферах экономики и побочно создающие негативный фактор воздействия ЭМП на насе­ление, и источники военного ха­рактера, специально генерирую­щие ЭМП как для вывода из строя определенных объектов инфраст­руктуры, так и для нанесения по­ражения населению.


Технологические источники подразделяются на группы по кри­терию частоты излучения: I груп­па - источники, генерирующие из­лучения в диапазоне от 0 Гц до 3 кГц; II группа - источники, гене­рирующие излучения в диапазоне от 3 кГц до 300 ГГц. К первой группе технологичес­ких источников относятся: 1) сис­темы производства, передачи и рас­пределения электроэнергии (эле­ктростанции, трансформаторные подстанции, системы и линии эле­ктропередачи); 2) офисная и до­машняя электро- и электронная техника, электросети жилых и ад­министративных зданий; 3) транс­порт на электроприводе и его ин­фраструктура.


К второй группе технологичес­ких источников относятся: 1) функциональные передающие ис­точники ЭМП, используемые в це­лях передачи и получения инфор­мации (теле- и радиопередающие Центры), системы сотовой и спут­никовой связи, релейные станции, навигационные системы, РЛС раз­личных видов и назначений; 2) тех­нологическое оборудование пред­приятий, использующих СВЧ-из­лучение; 3) СВЧ-печи; 4) медицин­ские терапевтические и диагнос­тические установки; 5) видеоди­сплейные терминалы ЭВМ.

 

К источникам ЭМИ военного характера относятся: радиочас­тотное электромагнитное оружие различных видов, лазерное ору­жие" и др.


ЭЛЕКТРОСТАТИЧЕСКИЕ ПОЛЯ (ЭСП)

представляют собой поля неподвижных электрических зарядов либо стационарные электрические поля постоянного тока. Они достаточно широко используются в промышленности для электрогазоочистки, электростатической сепарации руд и материалов, электростатического нанесения лакокрасочных и полимерных материалов и т. д. Вместе с тем существует целый ряд производств и технологических процессов по изготовлению, обработке и транспортировке диэлектрических материалов, где отмечается образование электростатических зарядов и полей, вызванных электризацией перерабатываемого продукта (текстильная, деревообрабатывающая, целлюлозно-бумажная, химическая промышленность и др.) В энергосистемах ЭСП образуются вблизи работающих электроустановок, распределительных устройств и ЛЭП постоянного тока высокого напряжения. При этом имеет место также повышенная ионизация воздуха (напр., в результате коронных разрядов) и возникновение ионных токов.

Одним из распространенных средств защиты от статического электричества является уменьшение генерации электростатических зарядов или их отвод с наэлектризованного материала, что достигается:

1)заземлением металлических и электропроводных элементов оборудования;

2)увеличением поверхностей и объемной проводимости диэлектриков;

3)установкой нейтрализаторов статического электричества.

 

 

Биологическое действие электромагнитных полей

Экспериментальные данные как отечественных, так и зарубежных исследователей свидетельствуют о высокой биологической активности ЭМП во всех частотных диапазонах. При относительно высоких уровнях облучающего ЭМП современная теория признает тепловой механизм воздействия. При относительно низком уровне ЭМП (к примеру, для радиочастот выше 300 МГц это менее 1 мВт/см2) принято говорить о нетепловом или информационном характере воздействия на организм. Многочисленные исследования в области биологического действия ЭМП позволят определить наиболее чувствительные системы организма человека: нервная, иммунная, эндокринная и половая. Эти системы организма являются критическими. Реакции этих систем должны обязательно учитываться при оценке риска воздействия ЭМП на население.

Биологический эффект ЭМП в условиях длительного многолетнего воздействия накапливается, в результате возможно развитие отдаленных последствий, включая дегенеративные процессы центральной нервной системы, рак крови (лейкозы), опухоли мозга, гормональные заболевания. Особо опасны ЭМП могут быть для детей, беременных (эмбрион), людей с заболеваниями центральной нервной, гормональной, сердечно-сосудистой системы, аллергиков, людей с ослабленным иммунитетом.

 

 


Просмотров 406

Эта страница нарушает авторские права

allrefrs.ru - 2020 год. Все права принадлежат их авторам!