Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Загальні характеристики канального рівня



Канальный уровень — уровень сетевой модели OSI, предназначенный для передачи данных узлам, находящимся в том же сегменте локальной сети. Также может использоваться для обнаружения и, возможно, исправления ошибок, возникших на физическом уровне. Примерами протоколов, работающих на канальном уровне, являются: Ethernet для локальных сетей (многоузловой), Point-to-Point Protocol (PPP), HDLC и ADCCP для подключений точка-точка (двухузловой).

Канальный уровень отвечает за доставку кадров между устройствами, подключенными к одному сетевому сегменту. Кадры канального уровня не пересекают границ сетевого сегмента. Функции межсетевой маршрутизации и глобальной адресации осуществляются на более высоких уровнях модели OSI, что позволяет протоколам канального уровня сосредоточиться на локальной доставке и адресации.

Заголовок кадра содержит аппаратные адреса отправителя и получателя, что позволяет определить, какое устройство отправило кадр и какое устройство должно получить и обработать его. В отличие от иерархических и маршрутизируемых адресов, аппаратные адреса одноуровневые. Это означает, что никакая часть адреса не может указывать на принадлежность к какой либо логической или физической группе.

Когда устройства пытаются использовать среду одновременно, возникают коллизии кадров. Протоколы канального уровня выявляют такие случаи и обеспечивают механизмы для уменьшения их количества или же их предотвращения.

Многие протоколы канального уровня не имеют подтверждения о приёме кадра, некоторые протоколы даже не имеют контрольной суммы для проверки целостности кадра. В таких случаях протоколы более высокого уровня должны обеспечивать управление потоком данных, контроль ошибок, подтверждение доставки и ретрансляции утерянных данных.

На этом уровне работают коммутаторы, мосты.

Спецификация IEEE 802 разделяет этот уровень на 2 подуровня. MAC (Media Access Control) регулирует доступ к разделяемой физической среде, LLC (Logical Link Control) обеспечивает обслуживание сетевого уровня.



Функции канального уровня:

1. Получение доступа к среде передачи. Обеспечение доступа — важнейшая функция канального уровня. Она требуется всегда, за исключением случаев, когда реализована полносвязная топология (например, два компьютера, соединенных через кроссовер, или компьютер со свичом в полнодуплексном режиме).

2. Выделение границ кадра. Эта задача так же решается всегда. Среди возможных решений этой задачи — резервирование некоторой последовательности, обозначающей начало или конец кадра.

3. Аппаратная адресация (или адресация канального уровня). Требуется в том случае, когда кадр могут получить сразу несколько адресатов. В локальных сетях аппаратные адреса (MAC-адреса) применяются всегда.

4. Обеспечение достоверности принимаемых данных. Во время передачи кадра есть вероятность, что данные исказятся. Важно это обнаружить и не пытаться обработать кадр, содержащий ошибку. Обычно на канальном уровне используются алгоритмы контрольных сумм, дающие высокую гарантию обнаружения ошибок.

5. Адресация протокола верхнего уровня. В процессе декапсуляции указание формата вложенного PDU существенно упрощает обработку информации, поэтому чаще всего указывается протокол, находящийся в поле данных, за исключением тех случаев, когда в поле данных может находится один-единственный протокол.

Протокол HDLC.

HDLC - протокол высокоуровневого управления каналом передачи данных, является опубликованным ISO стандартом и базовым для построения других протоколов канального уровня (SDLC, LAP, LAPB, LAPD, LAPX и LLC). Он реализует механизм управления потоком посредством непрерывного ARQ (скользящее окно) и имеет необязательные возможности (опции), поддерживающие полудуплексную и полнодуплексную передачу, одноточечную и многоточечную конфигурации, а так же коммутируемые и некоммутируемые каналы.



Формат кадра HDLC

На канальном уровне используется термин кадр для обозначения независимого объекта данных, передаваемого от одной станции к другой.

Флаг. Все кадры должны начинаться и заканчиваться полями флага "01111110". Станции, подключенные к каналу, постоянно контролируют двоичную последовательность флага. Флаги могут постоянно передаваться по каналу между кадрами HDLC.

Формат кадра HDLC
Флаг Адрес Управляющее поле Информационное поле CRC Флаг

 

Формат управляющего поля кадра HDLC
Разряды
N(S) P/F N(R) I-формат
S-коды P/F N(R) S-формат
U-коды P/F U-коды U-формат

N(S) - порядковый номер передаваемого кадра,
N(R) - порядковый номер принимаемого кадра,
P/F - бит опроса/окончания

Существует три типа станций HDLC:

- Первичная станция (ведущая) управляет звеном передачи данных (каналом).

- Вторичная станция (ведомая) работает как зависимая по отношению к первичной станции (ведущей).

- Комбинированная станция сочетает в себе одновременно функции первичной и вторичной станции.

Три логических состояния, в которых могут находиться станции в процессе взаимодействия друг с другом:

- Состояние логического разъединения (LDS). В этом состоянии станция не может вести передачу или принимать информацию. Если вторичная станция находится в нормальном режиме, она может принять кадр только после получения явного разрешения на это от первичной станции. Если станция находится в асинхронном режиме разъединения, вторичная станция может инициировать передачу без получения на это явного разрешения, но кадр должен быть единственным кадром, который указывает статус первичной станции.

- Состояние инициализации (IS). Это состояние используется для передачи управления на удаленную вторичную/комбинированную станцию, ее коррекции в случае необходимости, а также для обмена параметрами между удаленными станциями в звене передачи данных, используемыми в состоянии передачи информации.

- Состояние передачи информации (ITS). Вторичной, первичной и комбинированным станциям разрешается вести передачу и принимать информацию пользователя.

Три режима работы станции в состоянии передачи информации, которые могут устанавливаться и отменяться в любой момент:

- Режим нормального ответа (NRM - Normal Response Mode) требует, чтобы прежде, чем начать передачу, вторичная станция получила явное разрешение от первичной. После получения разрешения вторичная станция начинает передачу ответа, который может содержать данные.

- Режим асинхронного ответа (ARM - Asynchronous Response Mode) позволяет вторичной станции инициировать передачу без получения явного разрешения от первичной станции (обычно, когда канал свободен, - в состоянии покоя).

- Асинхронный сбалансированный режим (ABM - Asynchronous Balanse Mode) используют комбинированные станции. Комбинированная станция может инициировать передачу без получения предварительного разрешения от другой комбинированной станции. Этот режим обеспечивает двусторонний обмен потоками данных между станциями и является основным (рабочим) и наиболее часто используемым на практике.

Методи доступу в мережу.

Метод доступа – это способ определения того, какая из рабочих станций сможет следующей использовать ЛВС. То, как сеть управляет доступом к каналу связи (кабелю), существенно влияет на ее характеристики. Примерами методов доступа являются:

- множественный доступ с прослушиванием несущей и разрешением коллизий (Carrier Sense Multiple Access with Collision Detection – CSMA/CD);

- множественный доступ с передачей полномочия (Token Passing Multiple Access – TPMA) или метод с передачей маркера;

- множественный доступ с разделением во времени (Time Division Multiple Access – TDMA);

- множественный доступ с разделением частоты (Frequency Division Multiple Access – FDMA) или множественный доступ с разделением длины волны (Wavelength Division Multiple Access – WDMA).

CSMA/CD

Приведем алгоритм множественного доступа с прослушиванием несущей и разрешением коллизий:

Все сетевые интерфейсные платы запрограммированы на разные псевдослучайные промежутки времени. Если конфликт возникнет во время повторной передачи сообщения, этот промежуток времени будет увеличен.

TPMA

Метод с передачей маркера – это метод доступа к среде, в котором от рабочей станции к рабочей станции передается маркер, дающий разрешение на передачу сообщения. При получении маркера рабочая станция может передавать сообщение, присоединяя его к маркеру, который переносит это сообщение по сети. Каждая станция между передающей станцией и принимающей видит это сообщение, но только станция – адресат принимает его. При этом она создает новый маркер.

Маркер (token), или полномочие, – уникальная комбинация битов, позволяющая начать передачу данных.

Данный метод характеризуется следующими достоинствами:

- гарантирует определенное время доставки блоков данных в сети;

- дает возможность предоставления различных приоритетов передачи данных.

Вместе с тем он имеет существенные недостатки:

- в сети возможны потеря маркера, а также появление нескольких маркеров, при этом сеть прекращает работу;

- включение новой рабочей станции и отключение связаны с изменением адресов всей системы.

TDMA

Доступ TDMA основан на использовании специального устройства, называемого тактовым генератором. Этот генератор делит время канала на повторяющиеся циклы. Каждый из циклов начинается сигналом Разграничителем. Цикл включает n пронумерованных временных интервалов, называемых ячейками. Интервалы предоставляются для загрузки в них блоков данных.

Данный способ позволяет организовать передачу данных с коммутацией пакетов и с коммутацией каналов.

FDMA

Доступ FDMA основан на разделении полосы пропускания канала на группу полос частот, образующих логические каналы.

Широкая полоса пропускания канала делится на ряд узких полос, разделенных защитными полосами. Размеры узких полос могут быть различными.

При использовании FDMA, именуемого также множественным доступом с разделением волны WDMA, широкая полоса пропускания канала делится на ряд узких полос, разделенных защитными полосами. В каждой узкой полосе создается логический канал. Передаваемые по логическим каналам сигналы накладываются на разные несущие и поэтому в частотной области не должны пересекаться. Вместе с этим, иногда, несмотря на наличие защитных полос, спектральные составляющие сигнала могут выходить за границы логического канала и вызывать шум в соседнем логическом канале.

Метод доступа FDMA относительно прост, но для его реализации необходимы передатчики и приемники, работающие на различных частотах.


Просмотров 505

Эта страница нарушает авторские права

allrefrs.ru - 2021 год. Все права принадлежат их авторам!