Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Реакции по бензольному кольцу. Галогены ведут себя как ориентанты первого рода, хотя и затрудняют реакции электрофильного замещения



Галогены ведут себя как ориентанты первого рода, хотя и затрудняют реакции электрофильного замещения

Нитросоединения

Нитросоединениями называются органические вещества, содержащие в качестве функциональной группы нитрогруппу –NO2. Атом азота нитрогруппы непосредственно связан с углеродом в отличие от эфиров азотистой кислоты, содержащих функциональную группу –ОNO, где связь осуществляется через кислород. Эфиры азотистой кислоты изомерны нитросоединениям:

R–NO2 – нитросоединение

R–ONO – эфир азотистой кислоты

Изомерия. Номенклатура.

В зависимости от природы органического радикала, с которым соединена нитрогруппа, различают нитросоединения алифатические (предельные и непредельные), алициклические, ароматические и гетероциклические. По характеру углеродного атома, связанного с нитрогруппой, нитросоединения подразделяются на первичные, вторичные и третичные (подобно галогенопроизводным и спиртам). В состав молекулы может входить одна или несколько нитрогрупп.

По номенклатуре ИЮПАК нитрогруппа обозначается как заместитель с указанием ее положения в углеродной цепи цифрой:

Способы получения

Получение нитросоединений, по М. И. Коновалову, нитрованием в газовой фазе; из галогенопроизводных, а также в ароматическом ряду действием нитрующей смеси

Химические свойства

1. Восстановление. Конечными продуктами восстановления нитросоединений являются первичные амины.

2. Действие щелочей. Таутомерия нитросоединений.

Нитрогруппа, обладая сильным положительным зарядом на атоме азота, оттягивает на себя электронную плотность и увеличивает подвижность водородов у соседнего атома углерода – их способность отщепляться в виде протона. Подвижность α-водородных атомов первичных и вторичных нитросоединений проявляется в их способности реагировать со щелочами с образованием солей. Это объясняется тем, что в щелочной среде нитросоединения перегруппировываются в аци-нитроформу (кислотную):

3. Подвижность α-водородных атомов проявляется при взаимодействии первичных и вторичных нитросоединений с альдегидами:

Эта конденсация идет по альдольно-кротоновому типу.

4. Первичные и вторичные нитросоединения реагируют с азотистой кислотой, а третичные не реагируют:

Щелочные соли нитроловых кислот в растворе имеют красный цвет. Псевдонитролы в растворах и в расплавах окрашены в синий или зеленовато-синий цвет.



5. Соли аци-формы первичных и вторичных нитросоединений на холоду в водных растворах при действии минеральных кислот образуют альдегиды или кетоны (в момент выделения аци-форма подвергается гидролизу):

6. Влияние нитрогруппы в ароматическом ядре.

Нитрогруппа относится к заместителям второго рода: оттягивая электроны из ароматического ядра она уменьшает его активность в реакциях электрофильного замещения. Вступающий заместитель направляется в мета-положение:

Электронная плотность особенно сильно уменьшается в орто- и пара-положениях к нитрогруппе. Обедненные электронной плотностью орто- и пара-положения ядра приобретают частичный положительный заряд, а вместе с тем и способность к необычным для ароматических соединений реакциям нуклеофильного замещения:

Оттягивая электронную плотность из ядра, нитрогруппа повышает кислотность стоящих в орто- и пара-положениях гидроксильных групп. Пикриновая кислота ведет себя, как настоящая кислота (сила ее превышает силу угольной кислоты) – образует соли, эфиры со спиртами.

Под влиянием нитрогруппы увеличивается реакционная способность галогена, стоящего в орто- и пара-положениях:

 

 

Амины

Аминами называются производные аммиака, полученные замещением в нем атомов водорода на углеводородные радикалы

В зависимости от числа атомов водорода, замещенных радикалами, различают первичные, вторичные или третичные амины. При этом не имеет значения, какие радикалы (первичные, вторичные или третичные) являются заместителями.

Изомерия. Номенклатура

Изомерия аминов зависит от положения аминогруппы в углеродной цепи и от количества и строения радикалов, связанных с атомом азота.

Названия аминов обычно производят от названий входящих в их состав радикалов с добавлением окончания – амин:



СН3−NH2 - метиламин, (CH3−CH2)2NH - диэтиламин,

(CH3)3N - триметиламин

В номенклатуре ИЮПАК аминогруппу рассматривают как функцию и ее название «амино-» ставят перед названием основной цепи, с указанием ее положения цифрой:

Оба эти амина являются первичными.

Способы получения

1. Действие аммиака на галогенпроизводные (реакция Гофмана). При этом получается смесь различных аминов:

Смесь аминов обрабатывают щелочью и подвергают перегонке с водяным паром, а гидроксид полностью замещенного аммония [(CH3)4N]+OH остается в перегонной колбе. Разделение аминов производят, пользуясь их различной реакционной способностью.

2. Пропусканием паров спирта и аммиака при 3000С над катализатором (Al2O3; ThO2) получают смесь первичных, вторичных и третичных аминов с преобладанием первичных:

3. Амиды кислот при расщеплении гипобромитом или гипохлоритом дают первичные амины (перегруппировка Гофмана):

4. Восстановление различных азотосодержащих соединений: нитросоединений, нитрилов, изонитрилов, оксимов или гидразинов:

5. Действие азотистой кислоты.

Эта реакция имеет важное аналитическое значение, так как позволяет различать первичные, вторичные и третичные амины.

а) При действии азотистой кислоты на первичные алифатические амины (кроме метиламина) выделяется свободный азот и образуется спирт:

Реакцию удобнее вести с солью азотистой кислоты в присутствии минеральной кислоты.

б) При взаимодействии первичных ароматических аминов с азотистой кислотой образуются соли диазония:

в) Алифатические и ароматические вторичные амины с азотистой кислотой образуют N-нитрозамины:

6. При слабом нагревании ароматических первичных аминов с ароматическими альдегидами легко образуются шиффовы основания или азометины:

 

 

Спирты и фенолы

Спиртами называют производные углеводородов, содержащие группу –ОН, называемую гидроксильной группой или гидроксилом.

По числу гидроксильных групп, содержащихся в молекуле, спирты делятся на одноатомные, двухатомные, трехатомные и т.д.


Эта страница нарушает авторские права

allrefrs.ru - 2019 год. Все права принадлежат их авторам!