Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Спектральные методы анализа спиртов



Масс-спектры алифатических спиртов имеют слабые пики молекулярного иона, а для высших и разветвлённых спиртов эти пики практически отсутствуют, поскольку в существенной степени происходит фрагментация молекулы. Фрагментация, как правило, связана с потерей молекулы воды, а также элиминированием этилена. Для длинноцепочечных спиртов преобладает отщепление воды, поэтому их масс-спектры похожи на масс-спектры алкенов. Для первичных спиртов наблюдаются пики m/z 31, для вторичных — m/z 45, 59, 73, …, для третичных — m/z 59, 73, 87, …[100].

ИК-спектроскопические методы анализа

ИК-спектры спиртов характеризуются двумя типами интенсивных характеристических полос поглощения:

v полосы поглощения, связанные с валентными колебаниями связи O−H: 3650—3200 см−1;

v полосы поглощения, связанные с валентными колебаниями связи С−O: 1210—1000 см−1.

Также выделяют полосы поглощения средней интенсивности, как правило, не имеющие определяющего значения: в диапазоне 1450—1250 см−1 (плоскостные деформационные колебания O−H) и 750—650 см−1 (внеплоскостные деформационные колебания O−H).

ЯМР-спектроскопические методы анализа спиртов.

ЯМР-спектроскопия ядер 1H широко используются для анализа спиртов, однако на величины химических сдвигов протонов гидроксильной группы (δ, м. д.) существенно влияет природа растворителя и другие внешние факторы. Для алифатических и алициклических спиртов δ составляет 0,5—3,0 (в ДМСО-d6: 4—6).

 

Также для изучения спиртов применяют спектроскопию на ядрах 17O. Значительная разница в сдвигах для первичных (этанол: δ 5,9 м. д.), вторичных (пропанол-2: δ 39,8 м. д.) и третичных спиртов (2-метилпропанол-2: δ 62,3 м. д.) относительно воды H217O позволяет установить или подтвердить структуру исследуемого соединения.

 

Вопрос №29

Многоатомные спирты. Особенности их химического поведения. Этиленгликоль, глицерин. Непредельные спирты. Виниловый спирт. Винилацетат, поливинилацетат, поливиниловый спирт.



Многоатомные спирты - органические соединения, содержащие в своём составе более одной гидроксильной группы -ОН.

Многоатомные спирты по химическим свойствам сходны с одноатомными спиртами. Однако в химических свойствах многоатомных спиртов есть особенности, обусловленные присутствием в молекуле двух и более гидроксильных групп.

Кислотность многоатомных спиртов выше, чем одноатомных, что объясняется наличием в молекуле дополнительных гидроксильных групп, обладающих отрицательным индуктивным эффектом. Поэтому многоатомные спирты, в отличие от одноатомных, реагируют со щелочами, образуя соли. Например, этиленгликоль реагирует не только с щелочными металлами, но и с гидроксидами тяжелых металлов.

По аналогии с алкоголятами соли двухатомных спиртов называются гликолятами, а трехатомных — глицератами.

При взаимодействии этиленгликоля с галогеноводородами (НСl, HBr) одна гидроксильная группа замещается на галоген:

Вторая гидроксогруппа замещается труднее, под действием РСl5.

При взаимодействии гидроксида меди (II) с глицерином и другими многоатомными спиртами происходит растворение гидроксида и образуется комплексное соединение ярко-синего цвета.

Юта реакция используется для обнаружения многоатомных спиртов, имеющих гидроксильные группы при соседних атомах углерода -СH(ОН)-СН(ОН)-:

В отсутствие щелочи многоатомные спирты не реагируют с |гидроксидом меди (II) — их кислотность для этого недостаточна.



Многоатомные спирты взаимодействуют с кислотами, образуя сложные эфиры (см. §7). При взаимодействии глицерина с азотной кислотой в присутствии концентрированной серной кислоты образуется нитроглицерин (тринитрат глицерина):

Для спиртов характерны реакции, в результате которых образуются циклические структуры:

Этиленглико́ль(гликоль; 1,2-диоксиэтан; этандиол-1,2), HO—CH2—CH2—OH — простейший представитель полиолов (многоатомных спиртов). В очищенном виде представляет собой прозрачную бесцветную жидкость слегка маслянистой консистенции. Не имеет запаха и обладает сладковатым вкусом. Токсичен. Попадание этиленгликоля или его растворов в организм человека может привести к необратимым изменениям в организме и к летальному исходу.

Глицери́н (глицерол; 1,2,3-тригидроксипропан; 1,2,3-пропантриол) (гликос — сладкий) химическое соединение с формулой HOCH2CH(OH)-CH2OH или C3H5(OH)3. Простейший представитель трёхатомных спиртов. Представляет собой вязкую прозрачную жидкость.

Непредельные спирты (алкенолы и алкинолы) — производные непредельных углеводородов, в молекулах которых водородный атом замещен на гидроксильную группу.

Этенол (виниловый спирт) — ненасыщенный спирт с формулой CH2=CH-OH, легко превращается в ацетальдегид. Получены простые и сложные эфиры винилового спирта.

Винилацетат- органическое соединение класса сложных эфиров, прозрачная жидкость с характерным запахом.

 

Поливинилацетат (сокр. ПВА) — полимер винилацетата. Твердое бесцветное прозрачное нетоксичное вещество; не имеет запаха.

Химическая формула: [—CH2—CH(OCOCH3)—]n. Международное обозначение: PVAC.

Поливиниловый спирт (ПВС, международное PVOH, PVA или PVAL) — искусственный, водорастворимый, термопластичный полимер. Синтез ПВС осуществляется реакцией щелочного/-кислотного гидролиза или алкоголиза сложных поливиниловых эфиров.

Вопрос №30

Фенолы. Классификация. Номенклатура. Физические свойства. Кислотные свойства, получение фенолятов. Нуклеофильные свойства фенола: получение простых и сложных эфиров. Окисление фенолов. Реакции электрофильного замещения в фенолах: галогенирование, нитрование, сульфирование, нитрозирование, карбоксилирование. Фенол; 2,4,6-тринитрофенол (пикриновая кислота); a- и b-нафтолы. Идентификация фенольных соединений. Спектральные характеристики фенолов. Многоатомные фенолы. Строение, свойства. Пирокатехин, резорцин, гидрохинон, флороглюцин.

Фено́лы — органические соединения ароматического ряда, в молекулах которых гидроксильные группы связаны с атомами углерода ароматического кольца. По числу ОН-групп различают:

одноатомные фенолы (аренолы): фенол (C6H5OH) и его гомологи;

двухатомные фенолы (арендиолы): гидрохинон, пирокатехин, резорцин;

трёхатомные фенолы (арентриолы): пирогаллол, флороглюцин, гидроксигидрохинон и т. д.

Номенклатура.

Для фенолов широко используют тривиальные названия, сложившиеся исторически. В названиях замещенных моноядерных фенолов используются также приставки орто-, мета- и пара -, употребляемые в номенклатуре ароматических соединений. Для более сложных соединений нумеруют атомы, входящие в состав ароматических циклов и с помощью цифровых индексов указывают положение заместителей.

Химические свойства.

1. Кислотные свойства. Кислотные свойства фенола выражены сильнее, чем у воды и предельных спиртов, что связано с большей полярностью O—H связи и с большей устойчивостью образующегося при ее разрыве фенолят-иона. В отличие от спиртов, фенолы реагируют не только с щелочными и щелочноземельными металлами, но и с растворами щелочей, образуя феноляты:

2C6H5OH + 2Na 2C6H5ONa + H2
  фенолят натрия  

2. C6H5OH + NaOH C6H5ONa + H2O

3.
Однако кислотные свойства фенола выражены слабее, чем у карбоновых кислот и, тем более, у сильных неорганических.

4. Замещение в бензольном кольце. Наличие гидроксильной группы в качестве заместителя в молекуле бензола приводит к перераспределению электронной плотности в сопряженной -системе бензольного кольца, при этом увеличивается электронная плотность у 2-го, 4-го и 6-го атомов углерода (орто- и пара-положения) и уменьшается у 3-го и 5-го атомов углерода (мета-положение).

а) Реакция с бромной водой (качественная реакция):

+ 3Br2 + 3HBr

5.
Образуется 2,4,6-трибромфенол - осадок белого цвета.

б) Нитрование (при комнатной температуре):

6. C6H5—OH + HNO3(разб.) H2O + O2N—C6H4—OH (смесь орто- и пара-изомеров)

7.

+ 3HNO3(конц.) 3H2O +

8.
По вторй реакции образуется 2,4,6-тринитрофенол (пикриновая кислота).

9. Поликонденсация фенола с формальдегидом (по этой реакции происходит образование фенолформальдегидной смолы:

Качественная реакция с хлоридом железа(III). Образуется комплексное соединение фиолетового цвета.

 

Фено́л(гидроксибензол, устар. карболовая кислота) C6H5OH — простейший представитель класса фенолов. Бесцветные игольчатые кристаллы, розовеющие на воздухе из-за окисления, приводящего к образованию окрашенных веществ. Обладают специфическим запахом (таким, как запах гуаши, т. к. в состав гуаши входит фенол).

2,4,6-Тринитрофенол (пикриновая кислота) — химическое соединение C6H2(NO2)3OH, нитропроизводное фенола.

Нафтолы— оксипроизводные нафтена (нафталина) C10H(8-n)(ОН)n, где n = 1, 2, 3 и более. По свойствам нафтолы близки к фенолам бензольного ряда. В больших количествах нафтолы и их производные применяют в производстве красителей и органических полупродуктов.

1-Нафтол (α-нафтол) 2-Нафтол (β-нафтол)

Идентификация фенольных соединений. Спектральные характеристики фенолов. (см учебник том 1 стр 387).

Многоатомные фенолы – это двух- или трехатомные фенолы.

Существует три простейших двухатомных фенола: о-диоксибензол, или пирокатехин, м-диоксибензол, или резорцин, п-диоксибензол, или гидрохинон.

Пи

Пирокатехин гидрохинон

Двухатомные фенолы гораздо легче растворимы в воде, чем одноатомные. Одноатомные фенолы сравнительно легко окисляются; у двухатомных фенолов эта способность выражена сильнее: некоторые двухатомные фенолы окисляются настолько легко, что применяются в качестве восстановителей (проявителей) в фотографии (гидрохинон). Двухатомные фенолы менее ядовиты, чем одноатомные. С FeСl8 двухатомные фенолы дают характерное окрашивание, что позволяет различать их по цвету.

Трехатомные фенолы (трифенолы).

 

Представителем триоксибензолов является флороглюцин (1,3,5-триоксибензол), в свободном виде он обнаружен в шишках секвойи и чешуе лука, а в виде гликозида флорина – в околоплоднике плодов разных видов цитрусов.

Более сложные соединения - флороглюциды (гликозиды флороглюцина), они могут содержать одно кольцо флороглюцина (аспидинол) или представляют собой димеры или тримеры (кислоты флаваспидиновая и филиксовая).

Значительные количества флороглюцидов накапливается в корневищах мужского папоротника.

аспидинол


Просмотров 1473

Эта страница нарушает авторские права

allrefrs.ru - 2020 год. Все права принадлежат их авторам!