![]() Дисциплины:
Архитектура (936) |
Основные и нуклеофильные свойства спиртов
Спирты взаимодействуют с протонными кислотами и кислотами Льюиса с образованием оксониевых соединений: Образование оксониевых соединений играет важную роль в процессах замещения гидроксильной группы. Нуклеофильные свойства спиртов проявляются в их реакциях с карбоновыми и неорганическими кислотами и их производными с образованием сложных эфиров: Спирты – слабые нуклеофилы. Для увеличения нуклеофильности их превращают в алкоголяты, которые способны взаимодействовать с галогенпроизводными с образованием простых эфиров: R-Hal + R/O-Na+ ® R-OR/ + NaHal Однако алкоголят-ионы не только сильные нуклеофилы, но и сильные основания. Поэтому их взаимодействие с алкилгалогенидами может привести как к замещению, так и к элиминированию в зависимости от температуры и структуры алкилгалогенида и алкоголята. Например, для получения метилизопропилового эфира необходимо использовать метилиодид и изопропилат-анион, а не изопропилиодид и метилат-анион, так как в последнем случае будет доминировать реакция отщепления: Взаимодействие спиртов с галогеноводородами. Замещение гидроксильной группы на галоген приводит к образованию галогеналканов. Например: С2Н5ОН + НВг <-> С2Н5Вг + Н2O. Данная реакция обратима. Получение простых эфиров Межмолекулярная дегидратация спиртов: Реакция спиртов с алкенами: Получение сложных эфиров Этерификация — взаимодействие кислот и спиртов в условиях кислотного катализа, например получение этилацетата из уксусной кислоты и этилового спирта: СН3COOH + C2H5OH = СН3COOC2H5 + H2O. Внутримолекулярная дегидратация спиртов Если в реакцию с кислотой вступают двухатомные спирты, будет протекать реакция внутримолекулярной дегидратации с образованием гетероциклических соединений. Так например, 1,4-бутандиол образует тетрагидрофуран:
Окисление Под действием различных окислителей первичные спирты окисляются до альдегидов и далее — до карбоновых кислот, причём остановить реакцию на стадии образования альдегидов, предотвратив их дальнейшее окисление удаётся только за счёт использования специальных реагентов (хлорхромата пиридиния PCC и дихромата пиридиния PDC). Вторичные спирты окисляются до кетонов. Реакцию обычно проводят под действием реагента Джонса (CrO3—серная кислота). Дальнейшее окисление кетонов протекает только в жёстких условиях с разрушением углеродного скелета. Третичные спирты окисляются только в весьма жёстких условиях с разрушением углеродного скелета. Метано́л (метиловый спирт, древесный спирт[1], карбинол, метилгидрат, гидроксид метила) — CH3OH, простейший одноатомный спирт, бесцветная ядовитая жидкость. Метанол — это первый представитель гомологического ряда одноатомных спиртов. Этано́л (эти́ловый спирт, метилкарбино́л, ви́нный спирт или алкого́ль, часто в просторечии просто «спирт») — одноатомный спирт с формулой C2H5OH (эмпирическая формула C2H6O), другой вариант: CH3-CH2-OH, второй представитель гомологического ряда одноатомных спиртов, при стандартных условиях летучая, горючая, бесцветная прозрачная жидкость. Пропиловый спирт (пропан-1-ол, 1-пропанол) C3H7OH — одноатомный спирт. Существует изомер 1-пропанола — изопропиловый спирт (пропан-2-ол, 2-пропанол). Изопропиловый спирт, пропанол-2 (2-пропанол), изопропанол, диметилкарбинол, ИПС — простейший вторичный одноатомный спирт алифатического ряда. Существует изомер изопропанола — 1-пропанол. Бутанол-1 (н-бутанол, н-бутиловый спирт) C4H9OH — представитель одноатомных спиртов. Известны нормальный первичный бутиловый спирт СН3(СН2)3ОН и его изомеры: нормальный вторичный бутиловый спирт СН3СН2СН(ОН)СН3, изобутиловый спирт (СН3)2СНСН2ОН, третбутиловый спирт (триметилкарбинол) (СН3)3СОН. Бензиловый спирт, фенилкарбинол — простейший ароматический спирт, C6H5CH2OH. Идентификация спиртов. Качественный анализ гидроксильных групп Наличие гидроксильной группы в соединении можно выявить несколькими распространёнными химическими реакциями. v Проба Лукаса заключается в действии на спирт смеси соляной кислоты и хлорида цинка. При этом происходит образование алкилхлорида, который сначала образует эмульсию со спиртом, а затем отслаивается в виде второй фазы. Проба позволяет различить спирты с разным строением углеродной цепи: третичные спирты реагируют практически мгновенно, вторичные — примерно через 5 минут, а первичные реагируют очень медленно. Некоторые первичные спирты, активные в реакциях нуклеофильного замещения (аллиловый, бензиловый), также дают положительную реакцию с реактивом Лукаса. v Иодоформная проба предназначена для идентификации метилкетонов и метилкарбинолов (RCH(OH)СH3) по реакции с йодом в щелочной среде. При этом происходит образование желтоватого осадка иодоформа, имеющего характерный запах. v Проба Мейера позволяет дифференцировать первичные, вторичные и третичные спирты по реакции получаемых из них нитропроизводных с азотистой кислотой. На первой стадии спирты превращают в галогенопроизводные, а затем — в нитроалканы. При взаимодействие нитросоединений с HNO2 раствор приобретает красную окраску при подщелачивании, если исходный спирт был первичным; раствор в хлороформе становится синим, если спирт был вторичным. Третичные спирты дают отрицательную реакцию (бесцветный раствор) v Цератная проба заключается во взаимодействии спиртов с азотнокислым раствором гексанитратоцерата(IV) аммония, имеющим жёлтую окраску. При этом образуются переходные комплексы красного цвета, которые затем обесцвечиваются вследствие окисления спирта и перехода Ce(IV) в Ce(III) v Окислительная проба: при взаимодействии первичных или вторичных спиртов с реактивом Джонса, имеющим оранжевую окраску, образуются продукты окисления, а сам реактив меняет цвет на зелёный или голубой, благодаря солям восстановленного хрома(III). Важной особенностью теста является время фиксации изменения окраски — 2 секунды, по истечении которого любые дальнейшие изменения в структуре или цвете раствора не принимаются во внимание Количественный анализ спиртов
v Для количественного анализа спиртов обычно используют методы, основанные на реакции этерификации ангидридами карбоновых кислот, например, уксусным, фталевым, а также пиромеллитовым диангидридом. Содержание спирта определяется титрованием образующейся в результате реакции кислоты гидроксидом натрия v Другой метод анализа заключается в определении количества гидроксильных групп, способных реагировать с метилмагнийиодидом. В данном случае расчёт ведут по количеству выделившегося метана (метод Чугаева — Церевитинова).
|