Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Основные и нуклеофильные свойства спиртов



Спирты взаимодействуют с протонными кислотами и кислотами Льюиса с образованием оксониевых соединений:

Образование оксониевых соединений играет важную роль в процессах замещения гидроксильной группы.

Нуклеофильные свойства спиртов проявляются в их реакциях с карбоновыми и неорганическими кислотами и их производными с образованием сложных эфиров:

Спирты – слабые нуклеофилы. Для увеличения нуклеофильности их превращают в алкоголяты, которые способны взаимодействовать с галогенпроизводными с образованием простых эфиров:

R-Hal + R/O-Na+ ® R-OR/ + NaHal

Однако алкоголят-ионы не только сильные нуклеофилы, но и сильные основания. Поэтому их взаимодействие с алкилгалогенидами может привести как к замещению, так и к элиминированию в зависимости от температуры и структуры алкилгалогенида и алкоголята. Например, для получения метилизопропилового эфира необходимо использовать метилиодид и изопропилат-анион, а не изопропилиодид и метилат-анион, так как в последнем случае будет доминировать реакция отщепления:

Взаимодействие спиртов с галогеноводородами. Замещение гидроксильной группы на галоген приводит к образованию галогеналканов.

Например: С2Н5ОН + НВг <-> С2Н5Вг + Н2O. Данная реакция обратима.

Получение простых эфиров

Межмолекулярная дегидратация спиртов:

Реакция спиртов с алкенами:

Получение сложных эфиров

Этерификация — взаимодействие кислот и спиртов в условиях кислотного катализа, например получение этилацетата из уксусной кислоты и этилового спирта:

СН3COOH + C2H5OH = СН3COOC2H5 + H2O.

Внутримолекулярная дегидратация спиртов

Если в реакцию с кислотой вступают двухатомные спирты, будет протекать реакция внутримолекулярной дегидратации с образованием гетероциклических соединений. Так например, 1,4-бутандиол образует тетрагидрофуран:

.

Окисление

Под действием различных окислителей первичные спирты окисляются до альдегидов и далее — до карбоновых кислот, причём остановить реакцию на стадии образования альдегидов, предотвратив их дальнейшее окисление удаётся только за счёт использования специальных реагентов (хлорхромата пиридиния PCC и дихромата пиридиния PDC).



Вторичные спирты окисляются до кетонов. Реакцию обычно проводят под действием реагента Джонса (CrO3—серная кислота). Дальнейшее окисление кетонов протекает только в жёстких условиях с разрушением углеродного скелета.

Третичные спирты окисляются только в весьма жёстких условиях с разрушением углеродного скелета.

Метано́л (метиловый спирт, древесный спирт[1], карбинол, метилгидрат, гидроксид метила) — CH3OH, простейший одноатомный спирт, бесцветная ядовитая жидкость. Метанол — это первый представитель гомологического ряда одноатомных спиртов.

Этано́л (эти́ловый спирт, метилкарбино́л, ви́нный спирт или алкого́ль, часто в просторечии просто «спирт») — одноатомный спирт с формулой C2H5OH (эмпирическая формула C2H6O), другой вариант: CH3-CH2-OH, второй представитель гомологического ряда одноатомных спиртов, при стандартных условиях летучая, горючая, бесцветная прозрачная жидкость.

Пропиловый спирт (пропан-1-ол, 1-пропанол) C3H7OH — одноатомный спирт. Существует изомер 1-пропанола — изопропиловый спирт (пропан-2-ол, 2-пропанол).

Изопропиловый спирт, пропанол-2 (2-пропанол), изопропанол, диметилкарбинол, ИПС — простейший вторичный одноатомный спирт алифатического ряда. Существует изомер изопропанола — 1-пропанол.



Бутанол-1 (н-бутанол, н-бутиловый спирт) C4H9OH — представитель одноатомных спиртов. Известны нормальный первичный бутиловый спирт СН3(СН2)3ОН и его изомеры: нормальный вторичный бутиловый спирт СН3СН2СН(ОН)СН3, изобутиловый спирт (СН3)2СНСН2ОН, третбутиловый спирт (триметилкарбинол) (СН3)3СОН.

Бензиловый спирт, фенилкарбинол — простейший ароматический спирт, C6H5CH2OH.

Идентификация спиртов.

Качественный анализ гидроксильных групп

Наличие гидроксильной группы в соединении можно выявить несколькими распространёнными химическими реакциями.

v Проба Лукаса заключается в действии на спирт смеси соляной кислоты и хлорида цинка. При этом происходит образование алкилхлорида, который сначала образует эмульсию со спиртом, а затем отслаивается в виде второй фазы. Проба позволяет различить спирты с разным строением углеродной цепи: третичные спирты реагируют практически мгновенно, вторичные — примерно через 5 минут, а первичные реагируют очень медленно. Некоторые первичные спирты, активные в реакциях нуклеофильного замещения (аллиловый, бензиловый), также дают положительную реакцию с реактивом Лукаса.

v Иодоформная проба предназначена для идентификации метилкетонов и метилкарбинолов (RCH(OH)СH3) по реакции с йодом в щелочной среде. При этом происходит образование желтоватого осадка иодоформа, имеющего характерный запах.

v Проба Мейера позволяет дифференцировать первичные, вторичные и третичные спирты по реакции получаемых из них нитропроизводных с азотистой кислотой. На первой стадии спирты превращают в галогенопроизводные, а затем — в нитроалканы. При взаимодействие нитросоединений с HNO2 раствор приобретает красную окраску при подщелачивании, если исходный спирт был первичным; раствор в хлороформе становится синим, если спирт был вторичным. Третичные спирты дают отрицательную реакцию (бесцветный раствор)

v Цератная проба заключается во взаимодействии спиртов с азотнокислым раствором гексанитратоцерата(IV) аммония, имеющим жёлтую окраску. При этом образуются переходные комплексы красного цвета, которые затем обесцвечиваются вследствие окисления спирта и перехода Ce(IV) в Ce(III)

v Окислительная проба: при взаимодействии первичных или вторичных спиртов с реактивом Джонса, имеющим оранжевую окраску, образуются продукты окисления, а сам реактив меняет цвет на зелёный или голубой, благодаря солям восстановленного хрома(III). Важной особенностью теста является время фиксации изменения окраски — 2 секунды, по истечении которого любые дальнейшие изменения в структуре или цвете раствора не принимаются во внимание

Количественный анализ спиртов

 

v Для количественного анализа спиртов обычно используют методы, основанные на реакции этерификации ангидридами карбоновых кислот, например, уксусным, фталевым, а также пиромеллитовым диангидридом. Содержание спирта определяется титрованием образующейся в результате реакции кислоты гидроксидом натрия

v Другой метод анализа заключается в определении количества гидроксильных групп, способных реагировать с метилмагнийиодидом. В данном случае расчёт ведут по количеству выделившегося метана (метод Чугаева — Церевитинова).


Просмотров 2373

Эта страница нарушает авторские права

allrefrs.ru - 2020 год. Все права принадлежат их авторам!