Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Анализ линейных цепей несинусоидального тока



К линейным электрическим цепям применим принцип суперпозиции.

Если ЭДС источника в цепи схемы рис. 5.3

 

e(t) = E0 + E1m sinωt + + E2m sin2ωt = E0 + e1 + e2,

то в ветвях этой цепи ток

i = I0 + i1 + i2.

Каждый из этих токов определяется с использованием схем рис. 5.4, а,б,в.

 

Рис. 5.3

 

Рис. 5.4

Постоянная составляющая тока, определяемого из схемы рис. 5.4,а

Первая гармоника тока, определяемая из схемы рис. 5.4,б

.

где

Вторая гармоника тока, определяемая из схемы рис. 5.4,в

где .

Таким образом,

i = I0 + I1m sin(ωt – φ1) + I2m sin(2ωt – φ2).

Форма кривой тока отличается от формы кривой ЭДС. Начальные фазы гармоник тока отличаются от начальных фаз гармоник ЭДС. Объяснение этого факта следует из анализа цепи на рис. 5.5.

 
 
Падение напряжения на активном сопротивлении пропорционально току. Поэтому форма падения напряжения UR аналогична форме кривой тока.


Рис. 5.5

 

Падение напряжения на реактивных сопротивлениях отличается от несинусоидальных токов в этих элементах (см. рис. 5.6). ХкL = kωL

Рис.5.6

ХкC =

Спектры падения напряжения на элементах цепи рис. 5.5 представлены на рис. 5.7.

Рис. 5.7

Кривая намагничивания на индуктивности искажается больше, чем на емкости.

 

Электрические фильтры

Зависимость сопротивлений индуктивного и емкостного сопротивлений от частоты позволяет на их основе создавать фильтрующие цепи.

Фильтры – это устройства, обладающие свойством пропускания сигналов без ослабления в одной части полосы частот и не пропускания – в другой части. Основной их характеристикой является амплитудно-частотная: частотная зависимость коэффициента передачи Кu. Эта характеристика определяет полосу пропускания.

Фильтр считается идеальным, если в полосе пропускания коэффициент передачи равен единице, а вне ее – равен нулю. В зависимости от полосы частот, в которой сигнал пропускается, различают фильтры: низкочастотные, высокочастотные, полосовые и заграждающие (режекторные). Амплитудно-частотная характеристика таких идеальных фильтров приведена на рис. 5.8.

фильтр низких частот фильтр высоких частот

полосовой фильтр заграждающий фильтр

Рис. 5.8

Практически издать идеальный фильтр нельзя. В реальных фильтрах отсутствует резкая граница между полосой пропускания сигнала и полосой его непропускания.



Параметром фильтра низких частот являются сглаживающие фильтры, устанавливаемые на выходе выпрямителей, для устранения гармоник выпрямленного напряжения.

Схема индуктивного фильтра приведена на рис. 5.9. Принцип работы – ослабление гармоник.

XL = wLф

 

Рис. 5.9.

Временные диаграммы на рис. 5.10 иллюстрируют принцип работы идеального индуктивного фильтра (Rф << Rн; wLф >> Rн).

На рис. 5.10,а сплошной кривой показана временная зависимость напряжения на выходе выпрямителя, т.е. поступающего на вход фильтра. Сплошная прямая соответствует постоянной составляющей этого напряжения, пунктирная синусоида – первая гармоника. На рис. 5.10,б представлена временная зависимость напряжения на выходе фильтра. Величина постоянной составляющей напряжения не изменилась, а амплитуда синусоиды напряжения первой гармоники уменьшилась. В результате уменьшаются пульсации выпрямленного напряжения.

 

Рис. 5.10

 

Фильтры выпрямителей характеризуются коэффициентом сглаживания, который определяется отношением отношением коэффициентов пульсации на входе и выходе фильтра.

т.к. Uвх0 » Uвых0.

Для получения соотношения коэффициента сглаживания фильтра рис. 5.9 он представляется в виде делительной цепочки (рис. 5.11).

Рис. 5.11

Uвых1 = I RнUвых1 =

На рис. 5.12 приведена схема емкостного фильтра. Принцип его действия заключается в том, что переменная составляющая тока не проходит через Rн, поскольку XС << Rн.

Рис. 5.12

На рис. 5.13,а приведена схема комбинированного LC-фильтра, а на рис. 5.13,б – его эквивалентная схема для определения коэффициента сглаживания.

Рис. 5.13

Uвых1 = , Uвх1 =

.



Пример полосового фильтра – резонансный фильтр (рис. 5.14).

Рис. 5.14

Принцип работы - резонанс напряжения. На резонансной частоте сопротивление последовательно соединенных L и С минимально. L и С подбираются так, что резонансная частота совпадает с k-той гармоникой сигнала (см. рис. 5.14). Таким образом, значения падений напряжений всех гармоник в фильтре, кроме k-той будут большие. Для них коэффициент передачи будет существенно меньше, чем для k-той гармоники.

Острота резонанса увеличивается при увеличении добротности последовательно LC-контура. Следовательно, при увеличении добротности увеличивается ослабление гармоник, ближайших к k-той.

 

Рис. 5.15

Для большей эффективности фильтра нагрузку, как показано на рис. 5.16, шунтируют параллельным LC-контуром, сопротивление которого на резонансной частоте максимально. Контуры L1C1 и L2C2 настраиваются на частоту k-той гармоники сигнала.

 

Рис. 5.16

Пример заграждающего фильтра – резонансный фильтр, схема которого приведена на рис. 5.17,а. В этой схеме параллельный L1C1, для которого амплитудно-частотная характеристика приведена на рис. 5.17,б, включается последовательно с нагрузкой, последовательный L2C2-контур шунтирует нагрузку. Оба контура настраивают на частоту k-ой гармоники, которая не должна проходить в нагрузку.

Рис. 5.17

Пример полосового фильтра – мост Вина (рис. 5.18,а).

Эквивалентная схема моста Вина, приведенная на рис. 5.18,б, используется для получения соотношения его амплитудно-частотной характеристики. При этом используется соотношение

,

где А11 и А12 – А-коэффициенты матрицы передачи четырехполюсника рис. 5,18,б, определяемые из системы следующих уравнений.

 
 


 

Рис. 5.18

При предположении, что Zн ® ¥

Следовательно, модуль и фаза коэффициента передачи моста Вина

 

Исследование функции Кu(w) на экстремум дает, что максимум ее соответствует частоте .

Т.е. 1 - w02 R1 R2 C1 C2 = 0

Откуда Кu max = .

На частоте, соответствующей Кu max,

tgj = 0.

Из этих соотношений следует, что при R1 = R2, C1 = C2

Кu max = .

Принцип работы моста Вина: емкость C1 не пропускает низкие частоты, из-за емкости C2 высокие частоты не проходят через фильтр. Это иллюстрируется построениями на рис. 5.19,а. В результате получающаяся амплитудно-частотная характеристика приведена на этом рисунке пунктиром. На рис. 5.19,б представлена фазо-частотная характеристика моста Вина.

 

 

Рис. 5.19

Пример заграждающего фильтра двойной Т-образный мост (рис. 5.20).

Рис. 5.20

Принцип работы фильтра: две Т-схемы включены параллельно, что иллюстрируется рис. 5.21.

 

Рис. 5.21

Схема «А» не пропускает высокие частоты; схема «В» не пропускает низкие частоты. Значения Rи Cподбираются так, чтобы в определенной области частот сигнал не проходил через обе схемы. Как показывает анализ схем «А» и «В», Если R1 = R2 = 2R3 и C1 = C2 = 0,5С3, то частота

соответствует минимальной величине коэффициента передачи (см. рис. 5.22).

 

Рис. 5.22

 

 


Эта страница нарушает авторские права

allrefrs.ru - 2018 год. Все права принадлежат их авторам!