Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Гладкая мышечная ткань. Источник развития. Морфо- функциональная характеристика гладких мышечных тканей. Структурные основы сокращения. Иннервация. Регенерация



Различают три группы гладких мышечных тканей- мезенхимные, эпидермальные и нейральные.

Стволовые клетки и клетки – предшественники в гладкой мышечной ткани на этапах эмбрионального развития пока точно не отождествлены. Они мигрируют к местам закладки органов, будучи уже детерминированными. Дифференцируясь, они синтезируют компоненты матрикса и коллагена базальной мембраны, а также эластина. У дефинитивных клеток синтетическая способности снижена, но не исчезает полностью.

Гладкий миоцит- веретеновидная клетка длиной 20-500 мкм, шириной 5-8 мкм. Ядро палочковидное, находится в ее центральной части. Когда миоцит сокращается, его ядро изгибается и даже закручивается. Филаменты актина образуют в цитоплазме трехмерную сеть, вытянутую преимущественно продольно. Концы филаментов скреплены между собой и с плазмолеммой специальными сшивающими белками. Мономеры миозина располагаются рядом с филаментами актина. Сигнал к сокращению обычно поступает по нервным волокнам. Медиатор, который выделяется из их терминалей, изменяет состояние плазмолеммы. Она образует выпячивания- кавеолы, в которых концентрируются ионы кальция. Кавеолы отшнуровываются в сторону цитоплазмы в виде пузырьков. Это влечет за собой взаимодействие миозина с актином. Актиновые филаменты смещаются друг другу навстречу, плотные пятна сближаются, усилие передается на плазмолемму, и вся клетка укорачивается. Когда поступление сигналов со стороны нервной системы прекращается, ионы кальция эвакуируются из кавеол, миозин деполимеризуется и « миофибриллы» распадаются. Сокращение прекращается. Гладкая МТ иннервируется вегетативной нервной системой, т.е. не подчиняется воле человека. Сокращение ГМТ медленное - тоническое, зато ГМТ малоутомляема.
ГМТ в эмбриональном периоде развивается из мезенхимы. Вначале мезенхимные клетки имеют звездчатую, отросчатую форму, а при дифференцировке в ГМ-клетки приобретают веретеновидную форму; в цитоплазме накапливаются органоиды спецназначения - миофибриллы из актина и миозина.
Регенерация ГМТ:
1. Митоз миоцитов после дедифференцировки: миоциты утрачивают сократительные белки, исчезают митохондрии и превращаются в миобласты. Миобласты начинают размножаться, а потом вновь дифференцируются в зрелые леомиоциты.
2. Возможно образование новых ГМ-клеток из малодифференцированных стволовых клеток фибробластического дифферона рыхлой с.д. Физиологическая регенерация гладкой мышечной ткани проявляется в условиях повышенных функциональных нагрузок. Наиболее отчетливо это видно в мышечной оболочке матки при беременности. Такая регенерация осуществляется не столько на тканевом, сколько на клеточном уровне: миоциты растут, в цитоплазме активизируются синтетические процессы, количество миофиламентов увеличивается. Не исключена, однако, и пролиферация клеток.



Скелетная поперечно-полосатая мышечная ткань. Источники развития. Морфо-функциональная характеристика миосимпласта. Структурные основы сокращения. Мышца как орган. Типы мышечных волокон. Регенерация.

Источником развития элементов скелетной поперечнополосатой мышечной ткани являются клетки миотомов- миобласты. Одни из них дифференцируются на месте и участвуют в образовании так называемых аутохтонных мышц. Другие клетки мигрируют из миотомов в мезенхиму. В ходе дифференцировки возникают две клеточные линии. Клетки одной из линий сливаются, образуя удлиненные сиппласты- мышечные трубочки.

В них происходит дифференцировка специальных органелл- миофибрилл. Клетки другой линии остаются самостоятельными и дифференцируются в миосимпластов. Основной структурной единицей скелетной мышечной ткани является мышечное волокно, состоящие из миосимпласта миосателлитоцитов, покрытых общей базальной мембраной.

Миосимпласт имеет множество продолговатых ядер, расположенных непосредственно под сарколеммой. Их количество в одном симпласте может достигать нескольких десятков тысяч. Миофибриллы заполняют основную часть миосимпласта и расположены продольно.

Типы мышечных волокон. Мышечные волокна в составе разных мышц обладают разной силой, скоростью и длительностью сокращения, а также утомляемостью. Ферменты в них обладают разной активностью и представлены в различных изомерных формах. Заметно различие в них содержания дыхательных ферментов- гликолитических и окислительных. По соотношению миофибрилл, митохондрий и миоглобина различают белые, красные и промежуточные волокна. По функциональным особенностям мышечные волокна подразделяют на быстрые, медленные, и промежуточные. Обычно в быстрых волокнах преобладают гликолитические процессы, они более богаты гликогеном, в них меньше миоглобина, поютому их называют также белыми. В медленных волокнах, напротив, выше активность окислительных ферментов, они богаче миоглобином, выглядят более красными.



Регенерация. Ядра миосимпластов делиться не могут, так как у них отсутствуют клеточные центры. Камбиальными элементами служат миосателлитоциты. Пока организм растет, они делятся, а дочерние клетки встраиваются в концы симпластов. После повреждения мышечного волокна на некотором протяжении от места травмы оно разрушается и его фрагменты фагоцитируются макрофагами. Восстановление тканей осуществляется за счет двух механизмов: компенсаторной гипертрофии самого симпласта и пролифирации миосателлитоцитов. В симпласте активизируются гранулярная эндоплазматическая сеть и аппарат Гольджи. Поврежденный конец миосимпласта утолщается, образуя мышечную почку. Миосателлитоциты, сохранившиеся рядом с повреждением, делятся. Одни из них мигрируют к мышечной почке и встраиваются в нее, другие сливаются и образуют миотубы, которые затем входят в состав вновь образованных мышечных волокон или формируют новые волокна.

Скелетная мышца как орган.Передача усилий сокращения на скелет осуществляется посредством сухожилий или прикрепления мышц непосредственно к надкостнице.На конце каждого мышечного волокна плазмолемма образует глубокие узкие впячивания.В них со стороны сухожилия или надкостницы проникают тонкие коллагеновые волокна. Последние спирально оплетаются ретикулярными волокнами. Концы волокон направляются к базальной мембране, входят в неё, поворачивают назад и по выходе снова оплетают коллагеновые волокна соед.ткани.Между мышечными волокнами находятся тонкие прослойки рыхлой волокнистой соед.ткани- эндомизий.Более толстые прослойки рыхлой соединт.ткани окружают по несколько мышечных волокон,образуя перемизий и разделяя мышцу на пучки. Соединительную ткань ,окружающую поверхность мышцы, называют эпимизием.

Сердечная поперечно-полосатая мышечная ткань. Источник развития. Морфофункциональная характеристика кардиомиоцита. Структурные основы совращения. Морфофункциональная характеристика поперечно-полосатой сердечной мышечной ткани.

Гистогенез и виды клеток. Источники развития поперечно-полосатой мышечной ткани- симметричные участки висцерального листка спланхнотома в шейной части зародыша- миоэпикардиальные пластинки. Из них дифференцируются также клетки мезотелия эпикарда. В ходе гистогенеза возникает 5 видов кардиомиоцитов- рабочие, синусные переходные, проводящие, а также секреторные.

Рабочие кардиомиоциты образуют свои цепочки. Именно они, укорачиваясь, обеспечивают силу сокращения всей сердечной мышцы. Рабочие кардиомиоциты способны передавать управляющие сигналы друг другу. Синусные кардиомиоциты способны автоматически в определенном ритме сменять состояние сокращения на состояние расслабления. Синусные кардиомиоциты передают управляющие сигналы переходным кардиомиоцитам, а последние- проводящим. Проводящие кардиомиоциты образуют цепочки клеток, соединенных своими концами. Первая клетка в цепочке воспринимает управляющие сигналы от синусных кардиомиоцитов и передает их далее- другим проводящим кардиомиоцитов. Клетки, замыкающие цепочку, передают сигнал через переходные кардиомиоциты рабочим. Секреторные кардиомиоциты вырабатывают натрийуретический фактор, участвующий в процессах регуляции мочеобразования и в некоторых других процессах. Все кардиомиоциты покрыты базальной мембраной.

Строение сократительных ( рабочих) кардиомиоцитов. Клетки имеют удлиненную форму, близкую к цилиндрической Их концы соединяются друг с другом, так что цепочки клеток составляют так называемые функциональные волокна. В области контактов клеток образуются так называемые вставочные диски. Ядро кардиомиоцита овальное и лежит в центральной части клетки. У полюсов ядра сосредоточены немногочисленные органеллы общего значения. Специальные органеллы, которые обеспечивают сокращение, называются миофибриллами. Кардиомиоциты соединяются друг с другом своими торцевыми концами образуются вставочные диски. Поперечные участки выступов соседних клеток соединены друг с другом интердигитациями и десмосомами. К каждой десмосоме со стороны цитоплазмы подходит миофибрилла, закрепляющаяся концом в десмоплакиновом комплексе. Таким образом, при сокращении тяга одного кардиомиоцита передается другому. Боковые поверхности выступов кардиомиоцитов объединяются нексусами. Это создает между ними метаболические связи и обеспечивает синхронность сокращений.

Нервная ткань


Эта страница нарушает авторские права

allrefrs.ru - 2018 год. Все права принадлежат их авторам!