Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Пример – образец титульного листа



РГР №1, М 1 (Контрольная работа №1 – для студентов заочной формы обучения) по дисциплине «Физика»

студента группы БРЭ – 10 –5 Ахметова К.М..

(Шифр 255330). Выбираем вариант 10

Условие задачи переписывают полностью, без сокращений. Затем его записывают с помощью общепринятых символических обозначений в краткой форме под заглавием «Дано». Заданные числовые значения переводят в единицы СИ. Решение каждой задачи необходимо сопроводить пояснениями, раскрывающими смысл и значение используемых обозначений, указывающими физические законы и принципы, положенные в основу решения. После того, как задача решена в общем виде, т.к. получен ответ в виде расчётной формулы, производят вычисления, руководствуясь при этом правилами приближённых вычислений. Получив численный ответ, следует оценить его правдоподобность; такая оценка позволит в ряде случаев обнаружить ошибочность полученного результата. Для замечаний преподавателя на странице оставляются поля.

В конце работы необходимо указать, каким учебником или учебным пособием студент пользовался при изучении физики.

Если контрольная работа студентами-заочниками пересылается по электронной почте, все требования, касающиеся её оформления, пояснения решений, также должны быть выполнены. В случае, если контрольная работа при рецензировании не была зачтена, студент обязан исправить ошибки и представить работу на повторную рецен­зию. Повторная контрольная работа представляется вместе с незачтенной. Рецензент может пригласить студента для беседы по существу решения задач.

Сроки сдачи РГР указаны в графике учебного процесса.

1.2.1 Правила выбора варианта контрольной работы для студентов-заочников.

Номер варианта выбирается по двум последним цифрам шифра (номера зачетной книжки) студента следующим образом:

- если предпоследняя цифра шифра нечетная, номера задач бе­рутся из соответствующей таблицы с 1 по 10 варианты, если четная – с 11 по 20 варианты;

- последняя цифра шифра определяет номер варианта.

 

1.2.2 Пример решения и оформления задачи

Задача. Какая часть от общего числа молекул азота, находящегося при температуре Т = 300 К и атмосферном давлении обладает скоростями, отличающимися от наиболее вероятной не более, чем на 2,0 м/с?

Дано:

Т=300 К

Решение. При атмосферном давлении и температуре 300 К азот можно считать идеальным газом. В отсутствие внешних сил молекулы идеального газа подчиняются закону распределения Максвелла. Согласно закону Мак­свелла число молекул , относительные скорости которых лежат в интервале от и до и + ∆и при условии, что ∆и « и, равно:



 

Относительная скорость в нашем случае равна и=1, поэтому

.

Вычислим наиболее вероятную скорость vв

 

vв = 422 (м/с);

 

∆и= .

 

Таким образом, условие <<u выполняется. Следовательно:

 

 

Итак, молекулы азота, обладающие при Т=300 К скоростями, которые лежат в интервале от (vв – 2,0) м/с до (vв + 2,0) м/с, составляют от общего числа долю, равную

∆N/N =0,84%.

 

 


Таблица 1- РГР № 1, М 1

В А.Г. Чертов, А.А. Воробьев. Задачник по физике, 1981 Физика. Задания к практическим занятиям./Под ред.Ж.П.Лагутиной/ Приложение А
А1 1-34;2-57; 11-25 8.29 1;36
А2 1-33;2-75; 11-29 9.31 2;37
А3 1-35;2-77; 11-27 8.32 3;38
А4 1-55;2-59; 11-28 9.35 4;39
А5 1-36;2-35; 11-56 8.33 5;40
А6 1-29;2-61; 10-33 8.34 6;41
А7 2-41;3-29(2); 10-37 8.35 7;42
А8 2-79(1);3-25; 11-61 8.36 8;43
А9 3-22;5-4; 10-17 8.37 9;44
А10 3-8;4-54; 11-63 8.38 10;45
А11 1-54;3-46;11-64 8.40 11;46
В12 3-54(1); 11-65 4.48;9.1 12;47
В13 3-54(2); 11-3 8.19; 9.2 13;48
В14 3-51; 11-8 4.27;9.3 14;49
В15 2-92; 11-9 5.35; 9.4 15;50
В16 5-41; 11-5 9.11;9.43 16;51
В17 5-42; 11-63 4-30;9.45 17;52
В18 5-40; 11-10 4.24;9.40 18;53
В19 3-53;11-11 6.12;9.21 19;54
В20 3-32;10-34 4.50;9.23 20;55
В21 3-54(3);10-36 4.28;9.47 21;56
В22 2-87;10-42 4.48;9.44 22;57
В23 3-30(2);10-45 6.33;9.50 23;58
В24 3-37;10-43 4.34;6.41;9.49 24;59
В25 3-30(3);10-62 4.46;9.30 25;60
В26 3-30(4);10-63 4.29;9.33 26;61
В27 3-43;10-64 4.50;9.37 27;62
В28 3-55;10-65 4.30;9.38 28;63
В29 3-25;10-67 6.27;9.24 29;64
  И.В. Иродов. Задачник по общей физике, 1988    
С30 1.81;2.21 6.44;8.13 30;65
С31 1.121;2.122 2.49;9.16 31;66
С32 1.128;2.123 6.45;8.9 32;67
С33 1.84;2.125 4.38;8.10 33;68
С34 1.123;1.295 8.11;9.27 34;69
С35 1.176;1.288 8.14;9.23 35;70

 



Контрольная работа №1 (заочное обучение)

 

Т а б л и ц а 1 – Варианты контрольных заданий (нечетные)

Вариант Номера задач (Чертов А.Г., Воробьёв А.А. «Задачник по физике».-М., 1981) Приложение А
1-13 2-15 3-46 8-4 10-62 1; 35
1-22 2-3 3-48 8-8 10-49 3; 37
1-32 2-6 3-55 8-10 11-12 5; 39
1-26 2-11 3-56(1) 8-29 11-16 7; 41
1-29 2-18 3-45 8-21 11-20 9; 43
1-17 2-34 3-53 10-15 11-64 11; 45
1-18 2-35 3-47 10-5 11-66 13; 47
1-19 2-7 3-29 9-32 11-60 15; 49
1-20 2-9 3-30 9-33 11-71 17; 51
1-30 2-8 3-36 9-25 11-72 19; 53

 

Т а б л и ц а 2 – Варианты контрольных заданий (четные)

Вариант Номера задач (Чертов А.Г., Воробьёв А.А. «Задачник по физике».-М., 1981) Приложение А
1-23 2-36 3-23 9-28 10-34 2; 36
1-24 2-39 3-25 9-29 10-28 4; 38
1-25 2-43 3-26 9-26 10-58 6; 40
1-40 2-45 3-13 9-21 10-56 8; 42
1-31 2-46 3-22 9-22 10-52 10; 44
1-41 2-50 3-20(1) 8-29 11-53 12; 46
1-42 2-57 3-20(3) 8-27 11-63 14; 48
1-46 2-67 3-19(1) 8-20 11-65 16; 50
1-55 2-68 3-27 8-23 11-70 18; 52
1-56 2-76 3-28 8-24 11-54 20; 54

 

 

Приложение А

 

1. Как выражается кинетическая энергия в релятивистской механике? При каком условии релятивистская формула для кинетической энергии переходит в классическую? Докажите это.

2.Может ли нормальное ускорение частицы при движении по криволинейной траектории: а) равняться нулю; б) равняться постоянному вектору?

3.В северном полушарии производится выстрел вдоль меридиана на север. Как скажется на движении снаряда суточное вращение Земли?

4. Сформулировать уравнения движения частицы массы m в проекциях на направления касательной и нормали к траектории.

5.Как определяется интервал между событиями? Доказать, что он является инвариантом при переходе от одной инерциальной системы отсчета к другой.

6. Зависит ли путь, проходимый автомобилем с выключенным двигателем при движении «юзом» (колеса не прокручиваются), от массы автомобиля? Докажите ваше утверждение.

7. Какова логическая связь между тремя законами Ньютона? Нельзя ли рассматривать первый закон как следствие второго?

8. Сила F=4 mg прижимает брусок массой m к вертикальной стенкой. Коэффициент трения между бруском и стенкой к=0,5. Что происходит с бруском?

9 .Найдите кинетическую энергию катящегося без проскальзывания однородного шара массы m, если скорость его центра масс равна .

10. Пусть - радиус-вектор частицы, движущейся в плоскости ху. Что можно сказать о ее траектории, если: а) меняется только по модулю; б) меняется только по направлению; в) меняется только проекция на ось х?

11.Докажите, что относительная скорость двух частиц с ненулевыми массами покоя всегда меньше скорости света в вакууме.

12. Что можно сказать об ускорении частицы , если при ее движении имеет место условие: а) скорость частицы =const; б) модуль скорости =const?

13. Что такое силы инерции? Чем они отличаются от сил, действующих в инерциальных системах отсчета?

14.Тело брошено под углом к горизонту. Сохраняется ли: а) импульс тела; б) проекция импульса на какое-либо направление? Сопротивлением воздуха пренебречь.

15 .Сопоставьте основные уравнения динамики поступательного и вращательного движения, прокомментировав их аналогию.

16 .Найдите кинетическую энергию катящегося без проскальзывания однородного цилиндра массы m, если скорость его центра масс равна .

17. В чем различие между понятиями энергии и работы?

18.На дне лифта лежит тело массы m. Чему равна сила реакции, приложенная к телу со стороны лифта: а) при его равномерном движении вниз со скоростью ; б) при свободном падении лифта; в) при его подъеме вверх с ускорением ?

19 .Удобный метод измерения коэффициента трения покоя состоит в следующем. Тело кладется на наклонную плоскость. Измеряется минимальный угол наклона плоскости a, при котором начинается скольжение. Найдите связь между углом a и коэффициентом трения.

20 .Шар катится по горизонтальной плоскости. Какую часть составляет энергия поступательного движения шара от его общей кинетической энергии?

21.Почему в общем случае нельзя написать: или ? Для какого движения эта запись справедлива?

22. Гладкий шар ударяется под некоторым углом о гладкую стенку. Доказать, что угол отражения равен углу падения.

23. Спроектировав уравнение динамики на оси х, у, z декартовой системы координат, получить три эквивалентных ему дифференциальных уравнения.

24 .Шар массы m1 совершает центральный абсолютно упругий удар о покоящийся шар массы m2. При каком соотношении масс m1 и m2 первый шар после удара полетит в обратном направлении?

25.Каково содержание закона независимости действия сил? Сформулируйте принцип суперпозиции сил. Объясните задачу о лебеде, раке и щуке.

26 .При какой скорости масса движущейся частицы вдвое больше ее массы покоя?

27 .Введите понятие импульса силы. Объясните, почему пуля, вылетев из ружья, пробивает отверстие в стекле, не разбивая его, а надавливанием стержнем на стекло этого сделать нельзя.

28.Найдите относительную скорость двух частиц, движущихся навстречу друг другу со скоростью .

29. Частица равномерно движется по окружности. Чему равна работа результирующей всех сил, действующих на частицу: а) за один оборот; б) за пол-оборота; в) за четверть оборота?

30. Какую продольную скорость нужно сообщить стержню для того, чтобы его длина стала равной половине длины, которую он имеет в состоянии покоя?

31.Объясните связь между законами сохранения импульса, момента импульса, механической энергии и свойствами симметрии пространства и времени.

32.Лошадь равномерно тянет сани. Рассмотреть взаимодействие трех тел: лошади, саней и поверхности земли. Начертить векторы сил, действующих на каждое из этих тел в отдельности, и установить соотношение между ними.

33. Что можно сказать о скорости и ускорении точки, если ее траектория – винтовая линия.

34 .Камень брошен вертикально вверх. В каких точках траектории камень будет иметь максимальное ускорение. Рассмотреть два случая: 1) сопротивление воздуха отсутствует; 2) сопротивление воздуха растет с увеличением скорости.

35.В каких случаях модуль перемещения точки равен длине пути, пройденного точкой за тот же промежуток времени?

36. Газ сначала расширился изотермически, затем был сжат адиабатно. Работы расширения и сжатия равны по модулю. Сравнить объём газа в начале и в конце процесса.

37. В газе происходят процессы: а) изохорное нагревание; б) адиабатное сжатие. Начальные температуры равны. Количество теплоты, поглощаемое в случае а, равняется работе над газом в случае б. Сравнить конечные температуры.

38. Сравнить работы, производимые газом в циклах I и I на рис.1

39. Известна зависимость n(r) концентрации молекул газа от координат. Найти распределение вероятностей dω(r) координат молекул. Объём газа V.

40. Газ из состояния 1 переходит в состояние 2 в одном случае непосредственно по изобаре, а в другом - сначала по изохоре 1-3, затем по изобаре 3-4 и, наконец, по изохоре 4-2. Доказать прямым расчетом, что приращение энтропии в обоих случаях одинаково.

41. Как зависит от давления средняя скорость молекул идеального одноатомного газа при адиабатическом сжатии или расширении?

42. Тепловая машина работает по циклу, состоящему из двух изохор и двух изобар. Доказать, что при работе машины энтропия системы нагреватель - газ - холодильник увеличивается. Как при этом изменяется энтропия газа? Теплоёмкости нагревателя и холодильника считать безграничными.

43. Равновесный идеальный газ находится во внешнем поле, в котором потенциальная энергия его молекулы равна u(r), температура газа Т. Концентрация молекул газа в точке с радиус-вектором r0 равна n0. Определить концентрацию молекул в точке с радиус-вектором r.

44. Энтропия процесса линейно растет с температурой. Как должна зависеть от температуры теплоемкость этого процесса?

45. Получить дифференциальное уравнение для зависимости давления р идеального газа с температурой Т, находящегося в однородном поле тяжести, от высоты h для чего рассмотреть цилиндр бесконечно малой высоты dh. Решить это уравнение в предположении, что температура газа не зависит от h и р(h=0)=p0. В тех же предположениях найти зависимость от высоты концентрации молекул n.

46. Два тела с начальными температурами Т1 и Т2 (причем Т12) приведены в соприкосновение. От окружающей среды тела изолированы, массы и теплоёмкости тел одинаковы. Как изменяется суммарная энтропия этих тел в процессе выравнивания температуры?

47. При каком значении температуры число молекул, скорости которых лежат в фиксированном интервале (u, u+du), максимально?

48. Определить наименьшее возможное давление идеального газа в процессе, происходящем по закону T=T0+αV2, где T0 и α - положительные постоянные, V – объем моля газа. Изобразить примерный график этого процесса в параметрах р , V.

49. На функции распределения молекул по скоростям выделен участок, ограниченный скоростями v2 и v3 (рис задачи 59). Как на основании этого графика определить энергию всех молекул, скорости которых заключены в данном интервале скоростей, и среднюю энергию этих молекул?

50. В цилиндре, закрытом поршнем, находится газ. Сверху поршень прижат пружиной, упругие свойства которой подчиняются закону Гука. Нарисовать в координатах рV изменение состояния газа при нагревании и определить совершаемую при этом работу, если объём газа изменяется от V1 до V2 и

давление - от р1 до р2.

 

51. Максвелловское распределение может быть представлено не только как функция скоростей, но и как функция энергий молекул. Эта функция определяет число молекул, энергия которых лежит в интервале от w до w+dw: dN=N0f(w)dw.

Требуется найти выражение этой функции и определить, относится ли она только к определённому газу или пригодна для любого газа.

52. По оси абсцисс на рисунке отложено количество теплоты, подведенное к идеальному газу, а по оси ординат - совершенная газом работа. Одна из прямых на рисунке - изотерма, две другие - изобары для двух газов. Начальные состояния ( давление, температура, объём) обоих газов одинаковы. Масштабы по обеим осям одинаковы. Какая прямая какому процессу соответствуют? Сколько степеней свободы у каждого газа? (Колебательные степени свободы не учитывать). Графики каких процессов совпадают с координатными осями?

53. Вследствие хаотичности движения молекул длины свободного пробега молекул имеют разнообразное значение. Если по оси ординат откладывать логарифмы числа молекул, длина свободного пробега которых больше некоторого расстояния х, а по оси абсцисс - расстояние х, то соответствующая зависимость изображается прямой линией с отрицательным наклоном согласно уравнению lg N=lgN0-ax.

Как на основании этого графика определить длину свободного пробега молекул?

54. Прямые на рисунке изображают зависимость изменения температуры от количества подведенной теплоты для различных процессов изменения состояния одноатомного и двухатомного газов. Каким процессам соответствуют эти прямые? Графики каких процессов совпадают с координатными осями? Начальные состояния (температура, объём, давление) обоих газов одинаковы.

55. Газ из молекул массы массы m находится в равновесном состоянии с температурой Т. Написать выражение для распределения вероятностей dw(vx)=φ(vx)dvx для компоненты vx скорости молекул газа. Нарисовать на одном чертеже графики зависимости φ(vx) для: а) v=v1, T=T1; б) m=4m1, T=T1; в) m=m1, T=4T1; г) m=αm1, T=αT1, где α - некоторое число. Чему равны площади под кривыми?

56. В тонкостенном сосуде объема V, стенки которого поддерживаются при постоянной температуре, находится идеальный газ. Сосуд помещен в вакуум. Как будет меняться с течением времени концентрация n молекул газа внутри сосуда, если в его стенке сделать очень малое отверстие площади S? Определить время t1/2, по истечении которого давление газа внутри сосуда уменьшится в 2 раза. Считать, что истечение газа происходит настолько медленно, что оно практически не нарушает равновесность состояния во всем сосуде, за исключением малой области вблизи отверстия. Температуру газа в сосуде считать постоянной и равной внешней температуре.

57. Распределение Максвелла для компоненты скорости (например vx) имеет вид

dw (vx)=φ(vx)dvx=A exp[-mv2x /(2kT)]dvx. Воспользовавшись значением интеграла Пуассона ∫ ехр(-αξ2)dξ= π/α отнормировать распределение Максвелла. Что происходит с максимальным значением φ при: а) увеличение температуры Т; б) увеличении массы m? Вычислить <V2x>.

58. Известно отношение γ=Срv для некоторого идеального газа. Получить уравнение адиабаты (d'Q=0) этого газа в переменных V,T; p,V; p,T. Почему отношение γ называют показателем адиабаты идеального газа?

59. На рисунке показана зависимость φ(vx). Какой физический смысл имеют заштрихованные площади?

60. Откачанный тонкостенный сосуд, стенки которого поддерживаются при постоянной температуре, погружен в атмосферу идеального газа с постоянной концентрацией n0, поддерживаемого при той же температуре. Как будет меняться с течением времени концентрация молекул газа внутри сосуда, если в его стенке сделать очень малое отверстие?

61. Все ординаты кривой 2 в два раза больше, чем соответствующие координаты кривой 1. Чем отличаются функции распределения молекул по скоростям, изображаемые этими кривыми?

 

62.На рисунке представлены адиабаты двух газов - гелия и углекислого газа. Какая кривая какому газу принадлежит?

 

63.Какая из прямых на рисунке правильно изображает в логарифмическом масштабе зависимость средней квадратичной скорости молекул от температуры?

 

64.Зависит ли давление идеального газа: а) от концентрации молекул; б) от температуры; в) от массы молекулы?

65.В сосуде постоянного объема производится нагревание один раз m граммов некоторого газа, другой раз 2m граммов этого же газа. Вычертить кривые зависимости давления от температуры для этих двух случаев. Указать различие в расположении кривых.

66.Газ находится в тепловом равновесии. Отличны ли от нуля: а) <v x>; б) <v>; в) <v>?

67.В теплоизолированном сосуде, разделённом на две секции подвижным и теплопроницаемым поршнем, содержатся два разных газа. Одинаковы ли в обеих секциях в состоянии равновесия: а) средние энергии молекул; б) плотности молекул; в) средние квадратические скорости молекул? Трением при перемещении поршня пренебречь.

 

 

68.В равновесном процессе в газе, представленном графиком АВС , точки А и С лежат на адиабате. Отличны ли от нуля, в этом процессе: а) количество поглощенной газом теплоты; б) изменение энтропии?

69.Какое повышение температуры идеального газа: а) изобарическое; б) изохорическое, требует большего количества теплоты?

70. Средняя скорость молекул равновесного газа в системе отсчета, где газ как целое покоится, равна <v>. Определите среднюю скорость <vотн> движения молекул газа относительно друг друга.

 

Таблица 2-РГР №2, М 2

Ва-ри-ант А.Г. Чертов, А.А. Воробьёв «Задачник по физике»1981 Физика. Задания к практическим занятиям / Под ред.Лагутинойб1989 И.Е.Иродов «Задачник по общей физике»1981 Приложение Б
А1 15-15,18-2,19-14,23-14 17.48   1,36
А2 14-3,17-4,19-29, 22-25 17.35   2,37
А3 14-4,15-14,18-4, 22-25 17.45   3,38
А4 14-5,15-23,19-26, 23-23 17.47   4,39
А5 15-44,18-14,19-29,23-24 17.39   5,40
А6 15-62,19-18,28,22-17 17.40   6,41
А7 14-3,15-48,19-27,22-17 16.43   7,42
А8 15-16,18-2,23-19 15-12,16.23   8,43
А9 15-26,19-16,23-18 11-25,16.26   9,44
А10 15-63,17-10,23-8 15-34,16-50   10,45
А11 15-19(б),19-26,24-15 15-23,16.27   11,46
А12 14-6,15-65,23-35 15-35,16-28   12,47
А13 14-12,15-17,24-9 15-14,16.29   13,48
А14 15-67,19-16,24-21 14-28,16.30   14,49
А15 15-22(1),15-50,24-24 15-35,16.44   15,50
В16 15-59,19-28,22-4 14-12 3.261 16,51
В17 15-14,19-28, 22-20 15-14 3.262 17,52
В18 15-30,18-7,24-18 15-23 3.271 18,53
В19 15-39,19-24,22-22 15-22 3.269 19,54
В20 15-49,19-17(б),22-19 15-23 3.290 20,55
В21 15-22(1),18-10,22-21 14-3 3.270 21,56
В22 15-50,20-6,23-40 13-35 3.264 22,57
В23 14-23, 19-18,22-19 13-29 3.294 23,58
В24 15-50,18-14,23-39 15-17 3.292 24,59
В25 14-23,17-10,24-12 14-26 3.259(а) 25,60
В26 13-16,17-23,22-29 15-34 2.231(а) 26,61
В27 15-19(2),17-18,22-41 15-9 3.259(б) 27,62
В28 14-29,15-18,22-18 14-3 3.231(б) 28,63
В29 14-27,15-21,24-10 15-38 3.244 29,64
С30 23-33 14-29,13-38 3.32,3.250 30,65
С31   11-46,14-28,17.20 3.30,3.291 31,66
С32   15-40,13-47,17.50 3.32,3.248 32,67
С33   12-40,13-42 3.250,3.264, 3.289 33,68
С34   12-45,13-41 3.31,3.227,3.394 34,69
С35   12-31,13-31 3.30,3.228,3.272 35,70

 

Контрольная работа №3 (заочное обучение)

 

Т а б л и ц а 1 – Варианты контрольных заданий (нечетные)

Вариант Номера задач (Чертов А.Г., Воробьёв А.А. «Задачник по физике».-М., 1981) Приложение Б
13-2 14-22 15-30 23-2 24-23 1; 36
13-4 14-24 15-27 23-6 24-21 2; 37
13-6 14-26 15-38 23-10 24-19 3; 38
13-8 14-28 15-40 23-16 24-17 4; 39
13-20 14-30 15-20 23-20 24-15 5; 40
13-22 14-50 15-12 23-28 24-13 6; 41
13-14 14-52 15-8 23-30 24-22 7; 42
14-10 14-54 15-6 23-22 24-20 8; 43
14-4 14-56 15-4 23-34 24-18 9; 44
14-17 14-47 15-2 23-14 25-4 10; 45

 

Т а б л и ц а 2 – Варианты контрольных заданий (четные)

Вариант Номера задач (Чертов А.Г., Воробьёв А.А. «Задачник по физике».-М., 1981) Приложение Б
13-5 14-21 15-18 23-4 24-1 11; 63
13-9 14-23 15-28 23-8 24-3 18; 61
13-10 14-25 15-32 23-9 24-5 16; 62
13-13 14-27 15-36 23-13 24-7 17; 60
13-16 14-29 15-30 23-15 24-12 22; 59
13-18 14-51 15-22 23-17 24-14 21; 58
13-21 14-49 15-10 23-21 24-18 23; 57
14-6 14-53 15-7 23-27 25-5 25; 55
14-8 14-55 15-5 23-29 25-3 27; 47
14-18 14-46 15-3 23-33 25-1 29; 49

 

 

Приложение Б

 

1. Почему нить электролампы сильно нагревается, а подводящие провода остаются холодными ?

2. Может ли электрический заряд, помещенный в электростатическое поле, находиться в состоянии устойчивого равновесия ?

3. Радиусы внутренней и внешней обкладок цилиндрического конденсатора увеличили вдвое, сахранив заряды на обкладках. Изменились ли напряженность электрического поля вблизи внутренней обкладки конденсатора ?

4. Имеется ли вблизи поверхности проводника, по которому течет постоянный ток, электрическое поле ?

5. Совпадает ли траектория движения заряженной частицы в электростатическом поле с силовой линией этого поля ?

6. Превышает ли полезная мощность расходуемая при зарядке аккумулятора, мощность, затрачиваемую на тепловыделение ?

7. Дан равномерно заряженный диск. Определить: а) является ли плоскость диска эквипотенциальный; б) ортоганален ли градиент потенциала во всех точках плоскости диска ?

8. Конденсатор заполняют маслом. Как изменяется его электрическая энергия, если: а) конденсатор присоединен к источнику постоянной э.д.с.; б) конденсатор заряжен и отключен от источника постоянной э.д.с.?

9. Металлический шар радиуса R помещен в однородное электрическое поле. Изобразитькачественную картину эквипотенциальных поверхностей и линий поля Е.

10. Раздувается мыльный заряженный пузырь. Как изменяется а) электроемкость пузыря; б) электрическая энергия ?

11. Начертить схему силовых линий и эквипотенциальных поверхностей для системы двух точечных зарядов а) и ; б) и находящихся на растоянии d друг от друга. У к а з а н и е. Найти точку, в которой напряженность поля равна нулю. Найти сферу нулевого потенциала, а так же точку на прямой, соединяющей заряды, в которой потенциал тот же, что и в точке, где напряженность поля равна нулю.

12. Радиусы внутренней и внешней обкладок цилиндрического конденсатора увеличили вдвое, сохранив заряды на обкладках. Изменилось ли напряжение на конденсаторе ?

13. Правильно ли утверждение, что вольтметр, подключенный к клеммам разомкнутого источника, показывает э. д. с.?

14. Какой физический смысл имеют выражения:

а) ; б) ;

в) ; г) ,

где - заряд, находящийся в точке с радиус-вектором ?

15. Вблизи металического шара поместили точечный заряд. При этом оказалось, что электрическая сила , действующая на заряд, равна нулю. Найти знак заряда шара.

16. Является ли эквипотенциальной плоскость симметрии S в поле точечных зарядов +q и +q ?

 

 

S


•+q •+q

 

Рисунок 1

 

17. Как изменится ток короткого замыкания, если два одинаковых источника тока пересоединить из паралельного соединения в последовательное ?

18. Пластины плоского воздушного заряженного конденсатора притягиваются с силой F. Изменится ли эта сила, если ввести в воздушный зазор между пластинами конденсатора пластинку из диэлектрика ?

19. Показать, что в однородном проводнике при протекании постоянного тока объемная плотность зарядов равна нулю. Какие заряды создают поле Евнутри проводника ?

20. В каком случае два последовательно соединенных гальванических элемента, замкнутых на внешнее сопротивление, дадут меньший ток, чем один из этих элементов, включенный на то же сопротивление ?

21. Пространство между обкладками плоского конденсатора заполнено диэлектриком с диэлектрической проницаемостью e, изменяющейся в направлении, перпендикулярном пластинам. Однородны ли векторные поля и внутри конденсатора ?

22. Сферический слой, ограниченный двумя концентрическими сферами, заряжен электричеством с постоянной объемной плотностью. Пользуясь законам Кулона, показать что электрическое поле в полости, ограниченной таким слоем, равно нулю.

23. Какому условию, следующему из потенциальности электростатического поля, должна удовлетворять плотность постоянного тока в однородном изотропном проводнике при отсутствии сторонних сил?

24. Можно ли, имея два одинаковых конденсатора, получить емкость вдвое меньшую и вдвое большую, чем у одного из них ? Если можно, то как это сделать?

25. Две лампы, рассчитанные на одинаковое напряжение, но потребляющие различные мощности, включены в сеть последовательно. Почему одна из них будет гореть ярче?

26. Вокруг точечного заряда в однородном изотропном полярном диэлектрике мысленно проведена сфера. Как изменится абсолютное значение связанного заряда, охватываемого сферой, если: а) диэлектрик нагреть; б) увеличить радиус сферы ?

27. Диэлектрическая пластина ширины 2а с проницаемостью 2 помещена в однородное электрическое поле напряженности , линии которого перпендикулярны пластине. Изобразить на рисунке линии полей и .

28. Растояние между обкладками плоского конденсатора, присоединенного к источнику постоянной э.д.с.., удвоили. Как изменилась сила взаймодействя между обкладками? Краевыми эффектами пренебречь.

29. Конденсатор емкостью С заряженный до разности потенциалов U0, разряжается через сопротивление R. Ток разряда постепенно спадает согласно графику зависимости I(t), причем по оси абсцисс отложено время, а по оси ординат -lnI. Этому процессу соответствует прямая 1, (рис.2) затем один из параметров (U0, R, C) изменяют так, что новая зависимость имеет вид 2. Какой из параметров и в какую сторону изменен?

 

 

Рисунок 2 Рисунок 3

30. Точечный заряд q находится в центре диэлектрического шара (рис. 3) .Отличны ли от нуля интегралы а) ; б) по замкнутой поверхности S , частично захватывающей диэлектрик ?

31. На рисунке а, б, и в показаны картины трех электрических полей. Как будет вести незаряженный металлический шарик, помещенный в каждое из полей (рис.4).

 


Рисунок 4 Рисунок 5

 

32. Электромотор постоянного тока подключили к напряжению U.Сопротивление обмотки якоря R. При каком значении тока через обмотку полезная мощность будет максимальной ? Чему она равна ? Каков при этом К.П.Д. мотора ?

33. В центре куба находится точечный заряд q. Чему равен поток через: а) полную поверхность куба; б) одно из граней куба ? Изменятся ответы, если заряд находится не в центре куба, но внутри него ?

34. Заряженный конденсатор разряжается через сопротивление R. Зависимость логарифма тока разряда от времени имеет вид для двух разрядов (рис. 5 ).Условия опыта отличаются лишь одним из параметров: U0, С и R. Определить каким параметром отличаются друг от друга оба разряда и в каком случае этот параметр больше. Здесь U0- начальное напряжение на конденсаторе.

35. Бесконечная плоскость заряжена с постоянной поверхностной плотностью σ =0. Найти напряженность и потенциал φ по обе стороны от плоскости, считая потенциал плоскости равным нулю. Построить графики зависимостей Ех и φ от х, ось х перпендикулярна плоскости, точка х=0 лежит на плоскости ( рис. 6).

36 . Имеются два очень больших плоских проводящих листа, по которым текут одинаковые по величине и направлению поверхностные токи. Направление токов перпендикулярно к плоскости рисунка и направлено «на нас». Определить, опираясь на теорему о циркуляции вектора магнитной индукции и принцип суперпозиции, конфигурацию линий магнитного поля в области между листами и по обе стороны от них.

 

 


· ·

· ·

· ·

· ·

· ·

· ·

· ·

 

37. Большой плоский проводящий лист расположен в однородном магнитном поле так, что линии магнитного поля параллельны его плоскости. Как изменится конфигурация магнитных линий, если по листу пустить ток в направлении:

а) «на нас» перпендикулярно плоскости рисунка;

б) «от нас» перпендикулярно плоскости рисунка? Для решения задачи применить теорему о циркуляции вектора магнитной индукции и принцип суперпозиции.

 

 


B

 


38. Большой плоский проводящий лист расположен в однородном магнитном поле так, что линии магнитного поля перпендикулярны его плоскости. Как изменится конфигурация магнитных линий, если по листу пустить ток в направлении:

а) «на нас» перпендикулярно плоскости рисунка;

б) «от нас» перпендикулярно плоскости рисунка? Для решения задачи применить теорему о циркуляции вектора магнитной индукции и принцип суперпозиции.

 

 

B

 

 

 


39. Вдоль плоской длинной металлической ленты течет постоянный ток. Плотность тока везде одинакова. Опираясь на закон Био-Савара-Лапласа и принцип суперпозиции, опишите магнитное поле a) вблизи поверхности ленты на расстояниях r, много меньших по сравнению с шириной ленты b; б) на больших расстояниях r>>b. Нарисуйте примерную картину линий магнитной индукции в данных условиях.

40. Плоская горизонтальная граница делит пространство на две части. В нижней части индукция магнитного поля равна нулю. Докажите, что однородное поле вблизи поверхности в верхней части направлено параллельно ей.

41.По обе стороны большого проводящего листа создано однородное магнитное поле, направленное параллельно его плоскости. Определите силу, действующую на единицу площади этого листа, если значения индукции по разные стороны от проводящего листа равны B1= 0,2 Тл и B2=0,6 Тл, а их направления совпадают.

42. На рисунке представлен график зависимости напряженности H(r) от расстояния для поля бесконечно длинного прямолинейного провода с током при равномерном распределении плотности тока по сечению провода. Каким будет график H(r), если радиус провода увеличить от R1 до R2, оставив прежней силу тока в проводе и сохранив распределение плотности тока равномерным?

 

H

 

 

 


0 R1 r

 

43. По бесконечно длинному цилиндрическому прямолинейному проводу течет ток с плотностью, равномерно распределенной по сечению. Как изменяется модуль циркуляции вектора напряженности магнитного поля по круговому контуру с центром на оси провода при увеличении радиуса контура, если он располагается а) внутри контура; б) снаружи? Плоскость контура перпендикулярна оси провода.

44. По бесконечно длинному цилиндрическому прямолинейному проводу течет ток с плотностью, равномерно распределенной по сечению. Как изменится модуль циркуляции вектора напряженности магнитного поля по контуру, если круговой контур заменить квадратным той же длины и также с центром на оси провода? Плоскость контура перпендикулярна оси провода.

45. Во сколько раз уменьшится индукция магнитного поля в центре кольца с токов, если его согнуть по диаметру под углом α? Ток в кольце не меняется.

46.Через какое время после первой встречи произойдет встреча двух заряженных частиц, движущихся перпендикулярно магнитному полю индукции B? При первой встрече частицы двигались взаимно перпендикулярно. Заряд частиц q, масса m . Взаимодействием пренебречь.

47. Заряженная частица влетает в область однородного магнитного поля перпендикулярно линиям поля. По какой траектории будет двигаться эта частица, если магнитная индукция в данной области пространства станет медленно уменьшаться?

48. Заряженная частица влетает в область однородного магнитного поля перпендикулярно линиям поля. По какой траектории будет двигаться эта частица, если магнитная индукция в данной области пространства станет медленно возрастать?

49. Заряженная частица влетает в область магнитного поля под углом α<π/2 к линиям поля. По какой траектории будет двигаться эта частица, если линии поля в направлении ее движения постепенно расходятся?

V

B

q

 

 

50. Заряженная частица влетает в область магнитного поля под углом α<π/2 к линиям поля. По какой траектории будет двигаться эта частица, если линии поля в направлении ее движения постепенно сходятся?

 

V

B

q

 


51. Пространство разделено на две области плоскостью. В одной области создано магнитное поле индукции В, в другой – индукции В2, причем оба поля однородны и параллельны друг другу. С плоскости раздела перпендикулярно ей стартует электрон со скоростью υ в сторону области с индукцией В. Опишите дальнейшее движение электрона. Определите среднюю (дрейфовую) скорость перемещения электрона вдоль границы раздела магнитных полей, проницаемой для него.

 

´ ´ ´ ´ ´ ´ ´ ´ ´

v В1

´ ´ ´ ´ ´ ´ ´ ´ ´

·

´ ´ ´ ´ ´ ´ ´ ´ ´ ´

´ ´ ´ ´ ´ ´ ´ ´ ´ ´ В2

 

 

52. Области однородных магнитного и электрического полей разделены границей – плоскостью. Магнитное поле индукции В параллельно плоскости раздела. Электрическое поле напряженности Е перпендикулярно плоскости раздела. В электрическое поле на расстоянии от границы помещается частица массы m с зарядом q>0. Нарисуйте траекторию этой частицы. Найдите скорость дрейфа частицы вдоль проницаемой для нее границы раздела полей.

 

 

• • • • • • • • •

В • • • • • • • • •

 


q ˚

Е

 

53. Пластины плоского конденсатора с шириной зазора d между ними расположены перпендикулярно магнитному полю индукции В. Около катода расположен источник медленных электронов, вылетающих в разных направлениях к пластинам. При каком напряжении на конденсаторе электроны будут фокусироваться на аноде? Чем определяется размер пятна?

 

 

B

d

 

 


54. На плоские анод и катод, расстояние между которыми d, подается высокое напряжение. Система находится в магнитном поле индукции B, параллельном плоскости электродов. Определите, при каком напряжении электроны, вылетевшие под действием света из катода, достигнут анода. Найдите это напряжение, если B═0,1 Тл, d═2 см.

 

Анод

× × × × ×

d В

 

× × × × ×

 

Катод

 

55. Электрон влетает в область магнитного поля ширины ℓ. Скорость электрона vперпендикулярна как индукции поля B, так и границам области. Под каким углом к границе области электрон вылетит из магнитного поля?

 

56. Плоский конденсатор помещен в однородное магнитное поле индукции B, параллельное пластинам. Из точки A вылетают электроны в направлении, перпендикулярном магнитному полю. Напряжение, приложенное к пластинам, равно U. При каком условии электроны будут проходить через конденсатор?

 

 


А × × × ×

· v h

h/2 × × × ×

 


 

 

57. В трубе прямоугольного сечения a´b находится газ плотности ρ. В одном из концов трубы зажигают разряд, после чего ток I поддерживается постоянным. Возникшая область горения разряда магнитными силами вталкивается внутрь трубы, «сгребая» перед собой газ. Определите установившуюся скорость плазменной «пробки», считая, что она все время больше скорости звука в газе. Магнитное поле индукции B перпендикулярно вертикальным стенкам трубы.

b

 


a

 


БП

 


В

А

58. Металлическое кольцо разорвалось, когда ток в кольце был I0 . Сделали точно такое же кольцо, но из материала, предел прочности которого в десять раз больше. Какой ток разорвет новое кольцо?

 

59. Ускоритель плазмы (рельсотрон) состоит из двух параллельных массивных проводников (рельсов), лежащих в плоскости, перпендикулярной магнитному полю индукции B. Между точками A и C в водороде поджигают электрический разряд. Ток I в разряде поддерживается постоянным. Под действием магнитного поля область разряда (плазменный сгусток) перемещается, разгоняясь к концам рельсов и срываясь с них. Чему равна скорость плазменного сгустка, если его масса m? Расстояние между рельсами ℓ. Длина участка, на котором происходит ускорение плазмы, равна L. Вычислите скорость плазменного сгустка для случая B=1 Тл, ℓ=0,1 м, L=1 м, I=10 А; В плазменном сгустке содержится 10¹³ ионов водорода.

А

 

::::

× B ::::

::::

А ::::

¨¨¨

С

60. Индукция магнитного поля В, переходя через плоскую поверхность, меняет угол наклона к ней с α на β. Во сколько раз изменится индукция поля? Чему равна линейная плотность тока на поверхности?

В1

 

α

 

β

 

В2

 

61. Плоскости, пересекающиеся под углом a, делят пространство четыре области. Магнитное поле в каждой области однородно. В областях 1и 3индукция поля параллельна плоскости симметрии АА, направлена в одну сторону и равна соответственно B1 и B3. Определите индукцию поля в областях 2 и 4.

 

 


2

13

А А

В1 В3

4

 

 

62. Проводник с током находится в безграничной однородной и изотропной парамагнитной среде. Как изменятся величины индукции и напряженности магнитного поля, если температура среды увеличится?

63. Прямой длинный тонкий проводник с током лежит в плоскости, отделяющей пространство, которое заполнено непроводящим магнетиком с проницаемостью μ>1, от вакуума. На рисунке приведена картина линий вектора магнитной индукции, которая соответствует данным условиям. Нарисуйте соответствующую картину линий напряженности магнитного поля. Ответ обоснуйте, опираясь на законы магнитостатики.

 

 


вакуум I

В

μ

 

64. Опишите, что произойдет с легкой рамкой, подвешенной на длинной нити и расположенной вблизи конца соленоида, по которому течет постоянный ток, после того, как по рамке станут пропускать постоянный ток? Раскройте механизм взаимодействия рамки с током и магнитного поля соленоида.

 

 

 


 

65. Опишите поведение небольшого, подвешенного на нити стального стерженька после внесения его в неоднородное магнитное поле. Раскройте механизм взаимодействия этого стерженька с магнитным полем, опираясь на закон Ампера и понятие магнитного момента.

67. Легкий алюминиевый стержень, подвешенный на нити, внесли в неоднородное магнитное поле. Раскройте механизм взаимодействия этого стержня с магнитным полем, опираясь на закон Ампера и понятие магнитного момента. Опишите поведение указанного стержня в данных условиях.

68. Очень легкий стержень из висмута, подвешенный на нити, внесли в неоднородное магнитное поле. Опишите его поведение, раскройте механизм взаимодействия указанного стержня с магнитным полем в данных условиях.

69. Палочка из неизвестного вещества, помещенная между полюсами магнита в вакууме, расположилась вдоль линий магнитного поля. После заполнения пространства между полюсами магнита некоторой жидкостью ориентация палочки не изменилась. Каковы магнитные свойства вещества палочки и жидкости?

70. Палочка из неизвестного вещества, помещенная между полюсами магнита в вакууме, расположилась вдоль линий магнитного поля. Когда пространство между полюсами магнита заполнили некоторой жидкостью, палочка расположилась поперек поля. Каковы магнитные свойства вещества палочки и жидкости?

 

РГР №3, М 3

Т а б л и ц а 3 – Варианты заданий для студентов очной формы обучения

 

Уровень Вариант А.Г. Чертов, А.А. Воробьёв «Задачник по физике», -М., 1981 Физика. Задания к практическим занятиям. /Под ред. Ж.П. Лагутиной./-М.,1989 И.Е. Иродов «Задачи по общей физике», -М., 1988 Приложение B
А 25-8, 6-16 18-27,18-14,19.22   1,69
  25-30, 6-17 18-23,18-33, 19.24   2,68
  25-5, 6-3 18-24,18-34, 19.10   3,67
  25-3, 26-3, 6.19 18-22, 19.35   4,66
  25-7, 6-20(1) 18-23,18-33, 19.13   5,65
  25-8, 6-22 18-26,18-35, 19.25   6,64
  25-7,6-56 18-28,18-32, 19.40   7,69
  25-13,26-14, 6-57 18-30,19.28   8,63
  25-12,26-13,6-58 18-31, 19.26   9,62
  25-37, 26-2,6-59 18-9,19.31   10,61
  26-13, 25-47, 31-20 18-14,19.29   11,60
В 25-14,26-10, 30-17 18-37, 19.15   12,59
  25-37, 26-12,30-27 18-4,19-16   13,58
  25-10, 6-27 18-40,19.12, 21.22   14,57
  25-16,6-30 18-33,19.20, 21.10   15,56
  25-20,6-29 18-39,19.21, 21.13   16,55
  25-22,6.61 18-34,20.42, 21.15   17,54
  25-23,26-14 18-24,7.13, 21.26   18,53
  25-33,6-63, 30-28 18-28,19.34   19,52
  24-2, 25-15, 30-29 18-27,7.14   20,51
  25-41,26-13, 6.62 18-6, 19.42   21,50
  25-18, 6-63 18-8,7.15, 19.14   22,49
  25-20,6-28 18-35,21.28   23,48
  25-11, 26-3 18-30,7.17,21.30   24,47
  25-46, 26-9 18-22,7.18, 21.29   25,46
  25-48, 6-60 18-39,19.9, 21.26   26,45
  25-9,27-4 18-19,7.13,21.7   27,44
  25-43,6-12 18-20,7.19, 20.8   28,43
  25-45,6-27 18-39, 20.34,21.10   29,42
С 25-44,26-14,6-64 21.30 3.322 30,41
  25-40 18-28,7.20 3.325,4.109 31,40
  25-41 18-29,7.17 3.318,4.107 32,39
  25-38 18-18,20.8 3.326,4,126 33,38
  6-62 18-30,18.45 3.308,4.230 34,37
    18-44,21.29 3.300,4.3,5.80 35,36

 

 

Т а б л и ц а 1 – Варианты заданий (нечетные) для студентов заочной формы обучения


Эта страница нарушает авторские права

allrefrs.ru - 2018 год. Все права принадлежат их авторам!