Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Достаточные условия абсолютного экстермума функции двух переменных



Обратимся к формуле Тейлора (вопр. 11). Нас интересует случай, когда необходимые условия экстремума выполняются, т.к. в противном случае вопрос решается однозначно - экстремума нет. Поэтому будем считать:

 
 

 

И, перенеся f(х0,y0) в левую часть, получим слева


Кроме того, обозначим

 
 


Приводим к формуле:

Положим u = AΔx2 + 2B∆xΔy +CΔy2 При ρ→0 квадратичная форма u убывает со скоростью р2, т.е. быстрее. Поэтому в достаточно малой окрестности точки 0,, y0) ,будет выполнятся неравенство 1/2│u│>│R│(если u не обратится в нуль). Это означает, что знак приращения совпадает со знаком u. Разумеется, в точках, где u=0, знаки ∆f и R совпадают. Имеются 3 возможности:

1. Величина u сохраняет знак, обращаясь в нуль только при ∆x=∆y=0. Такая квадратичная форма называется знакоопределенной. В этом случае сохраняет знак и приращение ∆f . При ∆f≤0 в точке 0,, y0) имеется максимум, а при ∆f≥0 - минимум.

2. В любой оокрестности точки 0,, y0) величина u принимает как положительные, так и отрицательные значения. Такая квадратичная форма называется знакопеременной. В этом случае меняет знак и приращение ∆f . Экстремума нет.

3. Величина u сохраняет знак, но обращается в нуль не только в начале координат. Такая квадратичная форма называется знакопостоянной. В этом случае никакого вывода сделать нельзя без исследования остаточного члена. Если в точках названной прямой остаточный член меняет знак, то экстремума нет, если сохраняет тот же знак, что и величина u - экстремум есть, если сохраняет знак противоположный u - экстремума нет.

Дело свелось теперь к установлению условий, при которых квадратичная форма u является знакоопределенной, знакопеременной или знакопостоянной. Если А = С = 0, В ¹ 0, то u = В∆х∆у, и квадратичная форма является знакопеременной. При совпадении знаков ∆х и ∆у она имеет знак В, при несовпалении - знак противоположный знаку В. В этом случае экстремума нет. Если к тому же В = 0, вопрос об экстремуме решается путем исследования остаточного члена R в каждом конкретном случае.


Пусть теперь хотя бы одна из величин А, С отлична от нуля. Положим для определенности, что А ≠ 0. Преобразуем форму u: вынесем за скобки А, прибавим и вычтем (В¸А ∆у)2. Первые три слагаемых представляют полный квадрат, два последних приводим к общему знаменателю:



1. Если В2 - АС <0, то форма знакоопределенная. Действительно,

 
 

Поэтому выражение в квадратных скобках неотрицательно и может обратится в нуль только тогда, когда оба слагаемых равны нулю. Второе обращается в 0 лишь при ∆у=0. В этом случае первое слагаемое будет равно 0 только при ∆х=0. Очевидно, что знак знакоопределенной формы u совпадает со знаком числа А.

2. Если В2 - АС >0, то форма знакопеременная. Действительно, выражение в квадратных скобках останется ∆x2 и если ∆х≠0., то ∆x2 > 0; при ∆у≠0 можно взять ∆х = -В/А∆у и выражение в квадратных скобках будет отрицательным.

3. Если В2 - АС = 0, то форма знакопостоянная. В скобках останется выражение (∆х+В/А∆у)2, которое неотрицательно. Но в нуль оно обращается не только при ∆х=∆у=0, а и тогда, когда ∆х = -В/А∆у, при любом ∆у.

 

Частные производные.

Наряду с полным приращением функции вводится понятие частных приращений по х ∆хz и по у ∆уz. Они определяются формулами, где приращение дается только одной из переменных.

Определение: Частной производной функции f(x,y) по х называется предел отношения частного приращения ∆хz к приращению ∆х, когда х→0 (если этот предел существует)(1)

 
 

Аналогично определяется частная производная функции z=f(x,y) по у. Для частной производной функции нескольких переменных, производную функции одной переменной называют переменной иногда обыкновенной.

Формуле (1) можно дать такое толкование: у функции f(x,y) фиксируется значение переменной у и получается, что f(x,y) становится функцией одной переменной х, а частная производная - обыкновенной производной этой функции. Так же истолковывается формула для f'y(x,y) с той разницей, что f(x,y) рассматривается как функция одной переменной у. Мы приходим к следующему правилу.



Для вычисления частной производной по х следует переменную у (или другие переменные, если их несколько) считать постоянной и вычислять производную по х как обыкновенную.

Аналогично формулируется правило вычисления частной производной по у.

 


Эта страница нарушает авторские права

allrefrs.ru - 2018 год. Все права принадлежат их авторам!