Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)






Описание лабораторной установки



С.А. МАНЕГО, Ю.А. БУМАЙ, В.В. ЧЕРНЫЙ

ЭФФЕКТ ХОЛЛА

 

Рекомендовано УМО по образованию в области приборостроения в качестве учебно-методического пособия для студентов специальностей

 

1-38 02 01Информационно-измерительная техника

1-38 02 03Техническое обеспечение безопасности

 

 

Минск

БНТУ

 
 


УДК 537,633,2 (075.8)

ББК 22.334я7

М23

 

 

Составители:

С.А. Манего, Ю.А. Бумай, В.В. Черный

 

 

Рецензенты:

Кафедра физики полупроводников и наноэлектроники БГУ,
С.Н. Собчук

М 23 Эффект Холла /сост. С.А. Манего, Ю.А. Бумай, В.В. Черный. ‒ Минск: БНТУ, 2014. 22 с.

Учебно-методическое пособие содержит в краткой форме теорию важнейшего из гальваномагнитных эффектов – эффекта Холла. Рассмотрены практические применения эффекта. Приведена также схема экспериментальной установки для исследования эффекта Холла. Показано, как на основании экспериментальных данных определяются важнейшие характеристики полупроводника – концентрация носителей заряда и их подвижность.

Учебно-методическое пособие предназначено для студентов инженерных специальностей, изучающих раздел “ Электричество и магнетизм ” курса общей физики.

 

 

УДК 537,633,2 (075.8)

ББК 22.334я7

© БНТУ, 2014

 
 


ЭФФЕКТ ХОЛЛА

 

Цели работы:

 

1. Изучить теоретические основы эффекта Холла.

2. Изучить связь параметров материалов с результатами измерений эффекта Холла.

 

Задачи работы:

 

1. Провести электрические измерения и измерения эффекта Холла.

2. Определить концентрацию и подвижность носителей тока в полупроводнике.

Гальваномагнитные эффекты

Физические явления, обусловленные движением носителей заряда под действием внешних и внутренних полей или разности температур, называются кинетическими явлениямиили явлениями переноса. К ним относятся электропроводность и теплопроводность, гальваномагнитные, термомагнитные и термоэлектрические явления. Кинетические явления лежат в основе фотоэлектрических и фотомагнитных эффектов. Среди многообразия кинетических эффектов под названием гальваномагнитных объединяются эффекты, возникающие в веществе, находящемся в магнитном поле, при прохождении через вещество электрического тока под действием электрического поля. Другими словами, гальваномагнитные явления наблюдаются в веществе при совместном действии электрического и магнитного полей. К важнейшим гальваномагнитным явлениямотносятся:



1. эффект Холла;

2. магниторезистивный эффект или магнетосопротивление;

3. эффект Эттингсгаузена, или поперечный гальваномагнитный эффект;

4. эффект Нернста, или продольный гальваномагнитный эффект.

 

Эффекты перечислены в порядке их практической значимости. Названия «продольный» и «поперечный» отражают направление градиентов температуры относительно тока. Рассмотрим эти эффекты

 

Эффект Холла

Американский физик Эдвин Герберт Холл в 1879 году впервые описал явление, впоследствии названное его именем. Явление, открытое Холлом, состоит в том, что в проводнике с током, помещенном в магнитное поле, перпендикулярное направлению тока, возникает электрическое поле в направлении, перпендикулярном направлениям тока и магнитного поля. Наиболее важным применением эффекта Холла является определение концентрации носителей зарядав материалах, проводящих электрический ток, в частности, в полупроводниках, у которых концентрацию носителей зарядов можно произвольно изменить, например, за счет введения примесей.

Обратимся к чисто примесному полупроводнику, для определенности электронному. Схема, иллюстрирующая возникновение эффекта Холла, изображена на рисунке 1.

К образцу прямоугольной формы, расположенному по длине вдоль оси Х, приложено электрическое поле Е, вызывающее электрический ток плотностью:

 

Jx = –enVx = σEx, (1),

 

где: e – абсолютная величина заряда электрона; n – собственная концентрация электронов в объеме полупроводника.

Образец помещен в магнитное поле В, параллельно оси Z. В результате действия на движущиеся носители силы Лоренца



 

F= –e[V,B] (2)

 

электроны отклоняются в отрицательном направлении оси Y(дрейфовая скорость электронов Vнаправлена против тока) и скапливаются у боковой (передней) грани образца. Их накопление идет до тех пор, пока поперечное электрическое поле (поле Холла) не компенсирует поле силы Лоренца в направлении оси Y.

Вследствие появления поперечного поля Холла Ерезультирующее электрическое поле в образце конечных размеров будет повернуто относительно оси Х на некоторый угол φн (угол Холла), а ток будет идти лишь в направлении оси Х. Как видно из рисунка 1, угол определяется при этом соотношением:

 

(3),

 

где μ – дрейфовая подвижность.

Поскольку поле Холла Еy уравновешивает силу Лоренца, можно полагать, что оно должно быть пропорционально как приложенному полю В, так и току Jx в полупроводнике. Поэтому величину, называемую коэффициентом Холла, определяют так:

(4)

Следует обратить внимание на то, что, поскольку поле Холла направленно против оси Y (рис. 1), коэффициент R должен быть отрицательным.

С другой стороны, если бы заряд носителей был положительным (в дырочном полупроводнике), знак их Х-компоненты скорости был бы обратным, и сила Лоренца осталась бы по направлению неизменной. В результате поле Холла, имело бы направление, противоположное тому, которое оно имеет при отрицательно заряженных носителях.

Из этого вывода следует, что по знаку ЭДС Холла можно определить знак носителей заряда и,следовательно, тип проводимости полупроводника.

Чтобы рассчитать коэффициент Холла, воспользуемся выражением для общей силы, действующей на электрон со стороны электрического и магнитного полей. В общем случае эта сила определяется векторным уравнением:

 

F= –еЕ– e[V,B]. (5)

 

Рис. 1. Схема возникновения эффекта Холла при действии силы Лоренца на движущиеся электроны.

Величина холловского поля определяется балансом сил в направлении оси Y, при котором F= 0. Отсюда:

 

Еy = –VxB. (6

 

Тогда, воспользовавшись соотношением (1), имеем:

 

. (7)

Сравнивая (4) и (7), видим, что:

(8)

 

Таким образом, коэффициент Холла обратно пропорционален концентрации носителейи ни от каких других параметров полупроводника не зависит. Знак «минус» показывает электронную проводимость, дырочной проводимости соответствует знак «плюс».

Для практического определения коэффициента Холла воспользуемся уравнением (7), заменив напряженность электрического поля Ey потенциалом поля.

(9)

 

В случае однородного образца мы имеем:

 

(10),

 

где Ux – холловская разность потенциалов или э.д.с.Холла. С учетом выражений (7) и (10) э.д.с. Холла равна:

 

, (11),

 

где: - a и b поперечные размеры образца, a, b(соответственно по направлениям z и y); Ix – сила тока, протекающая через образец; Bz – индукция магнитного поля.

В действительности произведенный элементарный вывод коэффициента Холла не точен: в нем предполагалось, что все носители имеют одинаковую дрейфовую скорость, и не учитывался характер распределения электронов по скоростям и механизм рассеяния носителей.

Более строгое выражение для коэффициента Холла имеет вид:

 

(12),

 

где r = <τ2>/<τ>2, r – называют холл-фактором, τ – время релаксации носителей заряда. Через n в данном случае обозначена концентрация носителей (электронов или дырок). Параметр r является атрибутом реального твердого тела и зависит от механизма рассеяния носителей.

Так, - при рассеянии на ионах примеси r = 315π/512 = 1,93, что обычно имеет место в области низких температур;

- при рассеянии на тепловых колебаниях решетки r = 3π/8 = 1,18 - соответствует более высокой области температур;

- при рассеянии на нейтральных примесях, а также в металлах и сильно вырожденных полупроводниках r = 1.

В полупроводнике со смешанной проводимостью в слабом магнитном поле ( ) коэффициент Холла равен

 

(13)

 

Так как в случае собственной проводимости n = p = ni, то, введя b = μn / μp, для собственного полупроводника, получим:

, (14)

т. е. знак Rн определяется тем типом носителей тока, подвижность которых больше. Обычно отношение дрейфовых подвижностей b > 1 и R < 0. В частном случае собственного полупроводника, когда подвижности электронов и дырок равны между собой (n = p и μn = μp), коэффициент Холла, а следовательно, и ЭДС Холла равны нулю.

Из формулы (13) следует, что для получения максимальных значений RH целесообразно использовать полупроводник с одним знаком носителей заряда. В этом случае (13) переходит в (12) и ЭДС Холла максимальна.

Рассмотрим теперь произведение коэффициента Холла Rн и электропроводности σ = enμ для чисто примесного полупроводника. С учетом (12)

 

(15)

 

Мы видим, что величина |Rн|σ пропорциональна величине дрейфовой подвижности μ, при этом коэффициентом пропорциональности является безразмерная константа r (холл-фактор). Поэтому величина

μn=|Rн|σ (16)

 

имеет размерность подвижности и называется холловской подвижностью.

Таким образом, определив экспериментально Rн, σ и взяв их произведение, получим μn. Если известен механизм рассеяния, то по μn можно определить дрейфовую подвижность μ = μn/r, а по Rн – концентрацию носителей заряда и их знак; благодаря этому эффект Холла является одним из важнейших методов исследования полупроводника.

Выражение для практического определения коэффициента Холла можно получить из формулы (11):

(17)

В системе СИ Rx имеет размерность м3/Кл. Тогда из формулы (12) можно найти концентрацию носителей заряда

 

(18)

 

(19)

 

Одновременно с постоянной Холла определяют удельную проводимость образца «σ». Для образца с данными размерами (рис.2) удельная проводимость определяется по формуле:

 

(20)

 

Так как

 

(21)

 

(22)

 

Отсюда, можно определить подвижность электронов и дырок:

 

(23)

 

(24)

 

Применение эффекта Холла

На основе эффекта Холла можно создать ряд устройств и приборов, обладающих ценными и даже уникальными свойствами и занимающих важное место в измерительной технике, автоматике, радиотехнике и т. д. Приборы, созданные на основе эффекта Холла, называют датчиками Холла.

Датчики Холла позволяют измерять величину магнитного поля. Как видно из (11), при постоянной величине тока Э.Д.С. Холла прямо пропорциональна магнитной индукции. Линейная зависимость этих величин для датчиков Холла является преимуществом перед измерителями индукции на основе магнетосопротивления.

Датчики Холла также позволяют измерять электрические и магнитные характеристики металлов и полупроводников. В настоящее время в силу высокой точности, постоянства данных, надежности они нашли широкое применение в различных отраслях науки и техники. Датчики Холла могут применяться для измерения силы, давлений, углов, перемещений и других неэлектрических величин. При производстве полупроводниковых материалов эффект Холла используется для измерения подвижности и концентрации носителей в них. Для этой цели на специальном подготовленном образце измеряют э. д. с. Холла и по его величине судят о подвижности и концентрации носителей заряда материала, используемого для изготовления полупроводниковых приборов.

Датчики Холла используются в автомобилях, из-за их низкой стоимости, качества, надежности и способности противостоять жестким условиям окружающей среды. Датчики Холла используют в создании бесконтактных однополярных и биполярных выключателей и переключателей. Основные преимущества датчиков Холла - бесконтактность, отсутствие любых механических нагрузок и загрязнений.

 

Описание лабораторной установки

Изучение эффекта Холла в используемой установке проводится по методике постоянного тока. В качестве материала для исследования используется кремний и арсенид галлия, которые широко применяются в производстве электронных приборов.

К исследуемому образцу присоединены пять (5) электродов (рис.2). Торцевые электроды (1,2) служат для подведения к нему тока, боковые (3,4) используются для измерения э.д.с. Холла и (4,5) – для измерения падения напряжения Uσ с последующим определением проводимости (σ) образцов.

Рис. 2. Образец для измерения эффекта Холла и проводимости

 

 

Cхема измерительной установки изображена на рис. 3.

 

Рис. 3. Схема экспериментальной установки

 

Ток, протекающий через образец, измеряется с помощью вольтметра В7-20. Величина тока регулируется с помощью реостата «Рег. ТОКА». Переключатель «НАПРАВЛ. ТОКА» служит для изменения направления тока через образец.

Магнитное поле создается с помощью электромагнита. Величина и направление магнитной индукции устанавливается переключателем «МАГНИТНАЯ ИНДУКЦИЯ» по шкале прибора.

 

Порядок выполнения работы

 


Эта страница нарушает авторские права

allrefrs.ru - 2017 год. Все права принадлежат их авторам!